• Version:
  • 11.0 [archived version]
STRINGSTRING
DUT DUT PCNA PCNA RNASEH2B RNASEH2B MCM3 MCM3 FEN1 FEN1 PRIM1 PRIM1 RNASEH1 RNASEH1 RNASEH2A RNASEH2A MCM7 MCM7 MCM5 MCM5 RNASEH2C RNASEH2C
"RNASEH2A" - Ribonuclease H2 subunit A in Homo sapiens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RNASEH2ARibonuclease H2 subunit A; Catalytic subunit of RNase HII, an endonuclease that specifically degrades the RNA of RNA-DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging- strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA-RNA duplexes; Belongs to the RNase HII family. Eukaryotic subfamily (299 aa)    
Predicted Functional Partners:
RNASEH2B
Ribonuclease H2 subunit B; Non catalytic subunit of RNase H2, an endonuclease that specifically degrades the RNA of RNA-DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging- strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA-RNA duplexes (312 aa)
     
  0.999
RNASEH2C
Ribonuclease H2 subunit C; Non catalytic subunit of RNase H2, an endonuclease that specifically degrades the RNA of RNA-DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging- strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA-RNA duplexes (164 aa)
     
  0.999
FEN1
Flap endonuclease 1; Structure-specific nuclease with 5’-flap endonuclease and 5’-3’ exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5’-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5’-end of a downstream Okazaki fragment. It enters the flap from the 5’-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a [...] (380 aa)
   
 
  0.955
RNASEH1
Ribonuclease H1; Endonuclease that specifically degrades the RNA of RNA- DNA hybrids. Plays a role in RNA polymerase II (RNAp II) transcription termination by degrading R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site and behind the elongating RNAp II; Belongs to the RNase H family (286 aa)
   
 
  0.948
PRIM1
DNA primase small subunit; DNA primase is the polymerase that synthesizes small RNA primers for the Okazaki fragments made during discontinuous DNA replication; Belongs to the eukaryotic-type primase small subunit family (420 aa)
     
   
  0.941
PCNA
Proliferating cell nuclear antigen; Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase’s processibility during elongation of the leading strand. Induces a robust stimulatory effect on the 3’- 5’ exonuclease and 3’-phosphodiesterase, but not apurinic- apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA re [...] (261 aa)
     
 
  0.941
MCM7
DNA replication licensing factor MCM7; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (719 aa)
     
   
  0.938
DUT
Deoxyuridine 5’-triphosphate nucleotidohydrolase, mitochondrial; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA; Belongs to the dUTPase family (252 aa)
   
   
  0.934
MCM5
DNA replication licensing factor MCM5; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (734 aa)
     
   
  0.930
MCM3
DNA replication licensing factor MCM3; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (853 aa)
     
   
  0.925
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]