• Version:
  • 11.0 [archived version]
STRINGSTRING
SARS SARS ALOX5 ALOX5 QARS QARS SRSF11 SRSF11 NARS NARS GATB GATB D2HGDH D2HGDH NARS2 NARS2 TOMM20L TOMM20L TSPAN12 TSPAN12 PNPT1 PNPT1 ALDH5A1 ALDH5A1 POLN POLN QRSL1 QRSL1 HELQ HELQ GATC GATC DDX60L DDX60L POLG POLG DDX60 DDX60 DHTKD1 DHTKD1 HIBCH HIBCH KDR KDR POLQ POLQ PUS1 PUS1 CYP4V2 CYP4V2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TSPAN12Tetraspanin-12; Regulator of cell surface receptor signal transduction. Plays a central role in retinal vascularization by regulating norrin (NDP) signal transduction. Acts in concert with norrin (NDP) to promote FZD4 multimerization and subsequent activation of FZD4, leading to promote accumulation of beta-catenin (CTNNB1) and stimulate LEF/TCF-mediated transcriptional programs. Suprisingly, it only activate the norrin (NDP)-dependent activation of FZD4, while it does not activate the Wnt-dependent activation of FZD4, suggesting the existence of a Wnt-independent signaling that also p [...] (305 aa)
SARSSerine--tRNA ligase, cytoplasmic; Catalyzes the attachment of serine to tRNA(Ser) in a two-step reaction- serine is first activated by ATP to form Ser- AMP and then transferred to the acceptor end of tRNA(Ser). Is probably also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec). In the nucleus, binds to the VEGFA core promoter and prevents MYC binding and transcriptional activation by MYC. Recruits SIRT2 to the VEGFA promoter, promoting deacetylation of histone H4 at ’Lys-16’ (H4K16) [...] (514 aa)
NARSAsparagine--tRNA ligase, cytoplasmic; Aminoacyl tRNA synthetases, Class II (548 aa)
DDX60LProbable ATP-dependent RNA helicase DDX60-like; Ski2 like RNA helicases; Belongs to the helicase family (1706 aa)
DHTKD1Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1, mitochondrial; The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components- 2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (By similarity) (919 aa)
KDRVascular endothelial growth factor receptor 2; Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative reg [...] (1356 aa)
GATBGlutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) (557 aa)
POLQDNA polymerase theta; DNA polymerase that promotes microhomology-mediated end- joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery triggered in response to double-strand breaks in DNA. MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation. POLQ acts as an inhibitor of homology-recombination repair (HR) pathway by limiting RAD51 accumulation at resected ends. POLQ-mediated MMEJ may be required to promote [...] (2590 aa)
POLGDNA polymerase subunit gamma-1; Involved in the replication of mitochondrial DNA. Associates with mitochondrial DNA; Belongs to the DNA polymerase type-A family (1239 aa)
NARS2Probable asparagine--tRNA ligase, mitochondrial; asparaginyl-tRNA synthetase 2, mitochondrial; Belongs to the class-II aminoacyl-tRNA synthetase family (477 aa)
HELQHelicase POLQ-like; Single-stranded DNA-dependent ATPase and 5’ to 3’ DNA helicase. Involved in the repair of DNA cross- links and double-strand break (DSB) resistance. Participates in FANCD2-mediated repair. Forms a complex with POLN polymerase that participates in homologous recombination (HR) repair and is essential for cellular protection against DNA cross-links; Belongs to the helicase family. SKI2 subfamily (1101 aa)
QARSGlutamine--tRNA ligase; Glutamine--tRNA ligase. Plays a critical role in brain development; Belongs to the class-I aminoacyl-tRNA synthetase family (775 aa)
ALDH5A1Succinate-semialdehyde dehydrogenase, mitochondrial; Catalyzes one step in the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA); Aldehyde dehydrogenases (548 aa)
D2HGDHD-2-hydroxyglutarate dehydrogenase, mitochondrial; Catalyzes the oxidation of D-2-hydroxyglutarate to alpha-ketoglutarate (521 aa)
HIBCH3-hydroxyisobutyryl-CoA hydrolase, mitochondrial; Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Also hydrolyzes 3-hydroxypropanoyl-CoA (386 aa)
TOMM20LTOMM20-like protein 1; Translocase of outer mitochondrial membrane 20 like (152 aa)
QRSL1Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln) (528 aa)
SRSF11Serine/arginine-rich splicing factor 11; May function in pre-mRNA splicing; RNA binding motif containing (484 aa)
ALOX5Arachidonate 5-lipoxygenase; Catalyzes the first step in leukotriene biosynthesis, and thereby plays a role in inflammatory processes; Belongs to the lipoxygenase family (674 aa)
PUS1tRNA pseudouridine synthase A; Converts specific uridines to PSI in a number of tRNA substrates. Acts on positions 27/28 in the anticodon stem and also positions 34 and 36 in the anticodon of an intron containing tRNA. Involved in regulation of nuclear receptor activity possibly through pseudouridylation of SRA1 RNA (By similarity); Belongs to the tRNA pseudouridine synthase TruA family (427 aa)
CYP4V2Cytochrome P450 4V2; Omega-hydroxylase that oxidizes medium-chain saturated fatty acids and polyunsaturated omega-3 fatty acids, and which plays a role in fatty acid and steroid metabolism in the eye. Catalyzes the omega- hydroxylation of medium-chain saturated fatty acids such as laurate, myristate and palmitate in an NADPH-dependent pathway. The substrate specificity is higher for myristate > laurate > palmitate (C14>C16>C12). Acts as a polyunsaturated omega-3 fatty acids hydroxylase by mediating oxidation of docosahexaenoate (DHA) to 22-hydroxydocosahexaenoate. Also produces some 21 [...] (525 aa)
DDX60Probable ATP-dependent RNA helicase DDX60; Positively regulates DDX58/RIG-I- and IFIH1/MDA5- dependent type I interferon and interferon inducible gene expression in response to viral infection. Binds ssRNA, dsRNA and dsDNA and can promote the binding of DDX58/RIG-I to dsRNA. Exhibits antiviral activity against hepatitis C virus and vesicular stomatitis virus (VSV); Belongs to the helicase family (1712 aa)
PNPT1Polyribonucleotide nucleotidyltransferase 1, mitochondrial; RNA-binding protein implicated in numerous RNA metabolic processes. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3’-to-5’ direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3’ overhang double- stranded RNA with a 3’-to-5’ directionality in an ATP-dependent manner. Required for correct processing and polyadenylation of mitochondrial mRNAs. Plays a role as a cytoplasmic RNA [...] (783 aa)
POLNDNA polymerase nu; DNA polymerase with very low fidelity that catalyzes considerable misincorporation by inserting dTTP opposite a G template, and dGTP opposite a T template. Is the least accurate of the DNA polymerase A family (i.e. POLG, POLN and POLQ). Can perform accurate translesion DNA synthesis (TLS) past a 5S-thymine glycol. Can perform efficient strand displacement past a nick or a gap and gives rise to an amount of product similar to that on non-damaged template. Has no exonuclease activity. Error- prone DNA polymerase that preferentially misincorporates dT regardless of temp [...] (900 aa)
GATCGlutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in the mitochondria. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln); Belongs to the GatC family (136 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]