• Version:
  • 11.0 [archived version]
STRINGSTRING
IPO5 IPO5 TECR TECR NDUFB8 NDUFB8 HADHB HADHB HSD17B12 HSD17B12 ATP5C1 ATP5C1 ATP6V0D1 ATP6V0D1 TMCO1 TMCO1 RS1 RS1 FXYD2 FXYD2 AFG3L2 AFG3L2 PHB PHB ATP1B3 ATP1B3 ATP1B1 ATP1B1 ATP2B1 ATP2B1 ATP1A1 ATP1A1 YIPF5 YIPF5 ATP1B2 ATP1B2 ATP2B4 ATP2B4 SSR2 SSR2 CFL1 CFL1 CLTCL1 CLTCL1 ANK2 ANK2 ANK3 ANK3 TPM4 TPM4 MRPL40 MRPL40
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TECRVery-long-chain enoyl-CoA reductase; Catalyzes the last of the four reactions of the long- chain fatty acids elongation cycle. This endoplasmic reticulum- bound enzymatic process, allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme reduces the trans-2,3-enoyl-CoA fatty acid intermediate to an acyl-CoA that can be further elongated by entering a new cycle of elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membran [...] (308 aa)
ATP1B2Sodium/potassium-transporting ATPase subunit beta-2; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known; ATPase Na+/K+ transporting subunits (290 aa)
IPO5Importin-5; Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran- dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis re [...] (1115 aa)
AFG3L2AFG3-like protein 2; ATP-dependent protease which is essential for axonal and neuron development. In neurons, mediates degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU. Required for the maturation of paraplegin (SPG7) after its cleavage by mitochondrial-processing peptidase (MPP), converting it into a proteolytically active mature form (By similarity); In the N-terminal section; belongs to the AAA ATPase family (797 aa)
YIPF5Protein YIPF5; Plays a role in transport between endoplasmic reticulum and Golgi; Yip1 domain containing (257 aa)
HSD17B12Very-long-chain 3-oxoacyl-CoA reductase; Catalyzes the second of the four reactions of the long- chain fatty acids elongation cycle. This endoplasmic reticulum- bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme has a 3-ketoacyl-CoA reductase activity, reducing 3- ketoacyl-CoA to 3-hydroxyacyl-CoA, within each cycle of fatty acid elongation. Thereby, it may participate in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of memb [...] (312 aa)
ANK3Ankyrin-3; In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments. Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption; Ankyrin repeat domain containing (4377 aa)
ATP1B3Sodium/potassium-transporting ATPase subunit beta-3; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known; ATPase Na+/K+ transporting subunits (279 aa)
ATP6V0D1V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus tri [...] (351 aa)
FXYD2Sodium/potassium-transporting ATPase subunit gamma; May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase; Belongs to the FXYD family (66 aa)
SSR2Translocon-associated protein subunit beta; TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins; Belongs to the TRAP-beta family (183 aa)
NDUFB8NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (186 aa)
HADHBhydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (474 aa)
MRPL40Mitochondrial ribosomal protein L40; Belongs to the mitochondrion-specific ribosomal protein mL40 family (206 aa)
TPM4Tropomyosin alpha-4 chain; Tropomyosin 4; Tropomyosins (284 aa)
ATP5C1ATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa)
ANK2Ankyrin-2; In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. Attaches integral membrane proteins to cytoskeletal elements. Also binds to cytoskeletal proteins. Required for coordinate assembly of Na/Ca exchanger, Na/K ATPase and InsP3 receptor at sarcoplasmic reticulum sites in cardiomyocytes. Required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) in the inner segment of rod photoreceptor [...] (3957 aa)
ATP2B4Plasma membrane calcium-transporting ATPase 4; Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell. By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily (1205 aa)
ATP1B1Sodium/potassium-transporting ATPase subunit beta-1; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane; ATPase Na+/K+ transporting subunits (303 aa)
RS1Retinoschisin; Binds negatively charged membrane lipids, such as phosphatidylserine and phosphoinositides (By similarity). May play a role in cell-cell adhesion processes in the retina, via homomeric interaction between octamers present on the surface of two neighboring cells. Required for normal structure and function of the retina (224 aa)
ATP2B1Plasma membrane calcium-transporting ATPase 1; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell; ATPases Ca2+ transporting (1220 aa)
CFL1Cofilin-1; Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity. Regulates actin cytoskeleton dynamics. Important for normal progress through mitosis and normal cytokinesis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation. Required for neural tube morphogenesis and neural crest cell migration (By similarity) (166 aa)
CLTCL1Clathrin heavy chain 2; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network (By similarity) (1640 aa)
ATP1A1Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; ATPase Na+/K+ transporting subunits (1023 aa)
PHBProhibitin; Prohibitin inhibits DNA synthesis. It has a role in regulating proliferation. As yet it is unclear if the protein or the mRNA exhibits this effect. May play a role in regulating mitochondrial respiration activity and in aging (272 aa)
TMCO1Calcium load-activated calcium channel; Calcium-selective channel required to prevent calcium stores from overfilling, thereby playing a key role in calcium homeostasis. In response to endoplasmic reticulum overloading, assembles into a homotetramer, forming a functional calcium-selective channel, regulating the calcium content in endoplasmic reticulum store (239 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]