• Version:
  • 11.0 [archived version]
STRINGSTRING
INS INS TF TF INSR INSR ATP6V1F ATP6V1F TFRC TFRC ATP6V0A1 ATP6V0A1 ATP6V0B ATP6V0B ATP6V0E2 ATP6V0E2 TMEM199 TMEM199 ATP6V0D2 ATP6V0D2 ATP6V0D1 ATP6V0D1 ATP6V0A4 ATP6V0A4 ATP6V1H ATP6V1H CCDC115 CCDC115 ATP6V1D ATP6V1D ATP6V0C ATP6V0C ATP6V0E1 ATP6V0E1 ATP6AP1 ATP6AP1 TCIRG1 TCIRG1 ATP6V0A2 ATP6V0A2 ATP6V1A ATP6V1A ATP5G3 ATP5G3 ATP5J2 ATP5J2 PPA2 PPA2 LHPP LHPP PPA1 PPA1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ATP6V1DV-type proton ATPase subunit D; Subunit of the peripheral V1 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (247 aa)
CCDC115Coiled-coil domain-containing protein 115; Accessory component of the proton-transporting vacuolar (V)-ATPase protein pump involved in intracellular iron homeostasis. In aerobic conditions, required for intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation. Necessary for endolysosomal acidification and lysosomal degradation. May be involved in Golgi homeostasis (180 aa)
ATP6V0A1V-type proton ATPase 116 kDa subunit a isoform 1; Required for assembly and activity of the vacuolar ATPase. Potential role in differential targeting and regulation of the enzyme for a specific organelle (By similarity); V-type ATPases (838 aa)
TCIRG1V-type proton ATPase 116 kDa subunit a isoform 3; Part of the proton channel of V-ATPases (By similarity). Seems to be directly involved in T-cell activation; Belongs to the V-ATPase 116 kDa subunit family (830 aa)
ATP6V1AV-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the ATPase alpha/beta chains family (617 aa)
ATP5G3ATP synthase F(0) complex subunit C3, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...] (142 aa)
ATP6V0D2V-type proton ATPase subunit d 2; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity); V-type ATPases (350 aa)
ATP6V0D1V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus tri [...] (351 aa)
TMEM199Transmembrane protein 199; Accessory component of the proton-transporting vacuolar (V)-ATPase protein pump involved in intracellular iron homeostasis. In aerobic conditions, required for intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation. Necessary for endolysosomal acidification and lysosomal degradation. May be involved in Golgi homeostasis (208 aa)
ATP5J2ATP synthase subunit f, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the centr [...] (94 aa)
INSRInsulin receptor; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src- homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the acti [...] (1382 aa)
ATP6V0A4V-type proton ATPase 116 kDa subunit a isoform 4; Part of the proton channel of the V-ATPase that is involved in normal vectorial acid transport into the urine by the kidney; V-type ATPases (840 aa)
ATP6V0CV-type proton ATPase 16 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases (155 aa)
ATP6V0A2V-type proton ATPase 116 kDa subunit a isoform 2; Part of the proton channel of V-ATPases. Essential component of the endosomal pH-sensing machinery. May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the V-ATPase 116 kDa subunit family (856 aa)
PPA2Inorganic pyrophosphatase 2, mitochondrial; Hydrolyzes inorganic pyrophosphate. This activity is essential for correct regulation of mitochondrial membrane potential, and mitochondrial organization and function (334 aa)
ATP6V1HV-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates the ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes (483 aa)
TFRCTransferrin receptor protein 1; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for [...] (760 aa)
LHPPPhospholysine phosphohistidine inorganic pyrophosphate phosphatase; Phosphatase that hydrolyzes imidodiphosphate, 3- phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity); Belongs to the HAD-like hydrolase superfamily (270 aa)
ATP6AP1V-type proton ATPase subunit S1; Accessory subunit of the proton-transporting vacuolar (V)-ATPase protein pump, which is required for luminal acidification of secretory vesicles. Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca(2+)-dependent membrane fusion. May play a role in the assembly of the V-type ATPase complex. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the [...] (470 aa)
PPA1Pyrophosphatase 1 (289 aa)
INSInsulin; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver (110 aa)
TFSerotransferrin; Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation (698 aa)
ATP6V0E2ATPase H+ transporting V0 subunit e2; V-type ATPases (213 aa)
ATP6V1FATPase H+ transporting V1 subunit F; V-type ATPases (147 aa)
ATP6V0E1V-type proton ATPase subunit e 1; Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; Belongs to the V-ATPase e1/e2 subunit family (81 aa)
ATP6V0BV-type proton ATPase 21 kDa proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases (261 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]