• Version:
  • 11.0 [archived version]
STRINGSTRING
LIN28A LIN28A NOP56 NOP56 E4F1 E4F1 NCL NCL DDX21 DDX21 PABPC1 PABPC1 RPS16 RPS16 MEPCE MEPCE LARP7 LARP7 SSB SSB HEXIM2 HEXIM2 PABPC1L PABPC1L HNRNPA1 HNRNPA1 CDK9 CDK9 HEXIM1 HEXIM1 EIF4A3 EIF4A3 CCNT1 CCNT1 TCEA1 TCEA1 CLP1 CLP1 PABPC4 PABPC4 SNRNP70 SNRNP70 AFF1 AFF1 ZC3H8 ZC3H8 ZCRB1 ZCRB1 PABPC5 PABPC5 PABPC3 PABPC3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RPS16Ribosomal protein S16 (146 aa)
PABPC1LPolyadenylate-binding protein 1-like; poly(A) binding protein cytoplasmic 1 like; RNA binding motif containing (614 aa)
CCNT1Cyclin-T1; Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II); Cyclins (726 aa)
ZCRB1Zinc finger CCHC-type and RNA binding motif containing 1 (217 aa)
EIF4A3Eukaryotic initiation factor 4A-III; ATP-dependent RNA helicase. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all s [...] (411 aa)
PABPC3Polyadenylate-binding protein 3; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Binds poly(A) with a slightly lower affinity as compared to PABPC1; RNA binding motif containing (631 aa)
E4F1Transcription factor E4F1; May function as a transcriptional repressor. May also function as a ubiquitin ligase mediating ubiquitination of chromatin-associated TP53. Functions in cell survival and proliferation through control of the cell cycle. Functions in the p53 and pRB tumor suppressor pathways and regulates the cyclin CCNA2 transcription; Zinc fingers C2H2-type (784 aa)
HEXIM2Protein HEXIM2; Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor. In cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (286 aa)
PABPC5Polyadenylate-binding protein 5; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity); RNA binding motif containing (382 aa)
MEPCE7SK snRNA methylphosphate capping enzyme; S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5’-end of 7SK snRNA, leading to stabilize it (689 aa)
PABPC1Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r [...] (636 aa)
NCLNucleolin; Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5’-UUAGGG-3’ repeats more tightly than the telomeric single-stranded DNA 5’-TTAGGG-3’ repeats (710 aa)
HEXIM1Protein HEXIM1; Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor. In cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation. May also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response a [...] (359 aa)
HNRNPA1Heterogeneous nuclear ribonucleoprotein A1; Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May bind to specific miRNA hairpins; RNA binding motif containing (372 aa)
DDX21Nucleolar RNA helicase 2; RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II- promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs. In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2’- O-methylation, possibly by promoting the recruitment of late- acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes. [...] (783 aa)
PABPC4Polyadenylate-binding protein 4; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity); RNA binding motif containing (660 aa)
CDK9Cyclin-dependent kinase 9; Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytok [...] (372 aa)
LIN28AProtein lin-28 homolog A; RNA-binding protein that inhibits processing of pre-let- 7 miRNAs and regulates translation of mRNAs that control developmental timing, pluripotency and metabolism. Seems to recognize a common structural G- quartet (G4) feature in its miRNA and mRNA targets (Probable). ’Translational enhancer’ that drives specific mRNAs to polysomes and increases the efficiency of protein synthesis. Its association with the translational machinery and target mRNAs results in an increased number of initiation events per molecule of mRNA and, indirectly, in mRNA stabilization. B [...] (209 aa)
NOP56Nucleolar protein 56; Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) particles. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs; Belongs to the NOP5/NOP56 family (594 aa)
AFF1AF4/FMR2 family member 1 (1218 aa)
ZC3H8Zinc finger CCCH domain-containing protein 8; Acts as a transcriptional repressor of the GATA3 promoter. Sequence-specific DNA-binding factor that binds to the 5’-AGGTCTC-3’ sequence within the negative cis-acting element intronic regulatory region (IRR) of the GATA3 gene (By similarity). Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. Induces thymocyte apoptosis when overexpressed, which may indicate a role in regulation of thymocyte homeostasis; Zinc fingers CCCH-type (291 aa)
SSBLupus La protein; Binds to the 3’ poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation. In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation; La ribonucleoprotein domain containing (408 aa)
LARP7La-related protein 7; Negative transcriptional regulator of polymerase II genes, acting by means of the 7SK RNP system. Within the 7SK RNP complex, the positive transcription elongation factor b (P-TEFb) is sequestered in an inactive form, preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation; La ribonucleoprotein domain containing (589 aa)
TCEA1Transcription elongation factor A protein 1; Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3’-terminus; General transcription factors (301 aa)
CLP1Polyribonucleotide 5’-hydroxyl-kinase Clp1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex- phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicing; this ph [...] (425 aa)
SNRNP70U1 small nuclear ribonucleoprotein 70 kDa; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. SNRNP70 binds to the loop I region of U1-snRNA. The truncated isoforms cannot bind U1-snRNA; RNA binding motif containing (437 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]