• Version:
  • 11.0 [archived version]
STRINGSTRING
NDUFB3 NDUFB3 NDUFAB1 NDUFAB1 NDUFA7 NDUFA7 NDUFS4 NDUFS4 NDUFC2 NDUFC2 NDUFA1 NDUFA1 NDUFV2 NDUFV2 NDUFAF2 NDUFAF2 MT-ND3 MT-ND3 NDUFB7 NDUFB7 TIMMDC1 TIMMDC1 NDUFAF7 NDUFAF7 NDUFA5 NDUFA5 NDUFB1 NDUFB1 NDUFS6 NDUFS6 TMEM126B TMEM126B NDUFA10 NDUFA10 NDUFA11 NDUFA11 MT-ND6 MT-ND6 NDUFS1 NDUFS1 NDUFA6 NDUFA6 NDUFAF6 NDUFAF6 NDUFB2 NDUFB2 NDUFA2 NDUFA2 MT-ND5 MT-ND5 NDUFC1 NDUFC1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NDUFAF7Protein arginine methyltransferase NDUFAF7, mitochondrial; Arginine methyltransferase involved in the assembly or stability of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). Acts by mediating symmetric dimethylation of ’Arg-118’ of NDUFS2 after it assembles into the complex I, stabilizing the early intermediate complex; Belongs to the NDUFAF7 family (441 aa)
NDUFB7NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (137 aa)
NDUFB3NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (98 aa)
NDUFA2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (99 aa)
NDUFA10NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (355 aa)
NDUFS6NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (124 aa)
NDUFC2NADH dehydrogenase [ubiquinone] 1 subunit C2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (119 aa)
NDUFAF2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 2; Acts as a molecular chaperone for mitochondrial complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (169 aa)
NDUFS4NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (175 aa)
NDUFA7NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (113 aa)
NDUFV2NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (249 aa)
NDUFB1NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (105 aa)
TMEM126BComplex I assembly factor TMEM126B, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I (230 aa)
MT-ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (174 aa)
MT-ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (603 aa)
MT-ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (115 aa)
NDUFA1NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (70 aa)
NDUFAF6NADH dehydrogenase (ubiquinone) complex I, assembly factor 6; Involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I) at early stages. May play a role in the biogenesis of MT-ND1 (333 aa)
NDUFA11NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (228 aa)
NDUFS1NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized; NADH-u [...] (741 aa)
NDUFA5NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (116 aa)
TIMMDC1Complex I assembly factor TIMMDC1, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I (285 aa)
NDUFA6NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; LYR motif containing (154 aa)
NDUFB2NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (105 aa)
NDUFC1NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (76 aa)
NDUFAB1Acyl carrier protein, mitochondrial; Carrier of the growing fatty acid chain in fatty acid biosynthesis (By similarity). Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain; Belongs to the acyl carrier protein (ACP) family (156 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]