• Version:
  • 11.0 [archived version]
STRINGSTRING
ACOX2 ACOX2 ZNF830 ZNF830 ACAD8 ACAD8 ACOX3 ACOX3 ACADSB ACADSB ACADM ACADM GCDH GCDH ACOX1 ACOX1 ACADS ACADS ACOXL ACOXL ACADL ACADL ACAD9 ACAD9 LOXL4 LOXL4 SCLY SCLY SEPHS1 SEPHS1 SEPSECS SEPSECS SEC24A SEC24A TXNRD1 TXNRD1 TXNRD2 TXNRD2 UMPS UMPS SEPHS2 SEPHS2 ENDOV ENDOV RBM8A RBM8A UBA2 UBA2 CLIC3 CLIC3 LAGE3 LAGE3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GCDHGlutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L-hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. Isoform Short is inactive; Belongs to the acyl-CoA dehydrogenase family (438 aa)
UMPSUridine 5’-monophosphate synthase; Uridine monophosphate synthetase; In the C-terminal section; belongs to the OMP decarboxylase family (480 aa)
ACADLLong-chain specific acyl-CoA dehydrogenase, mitochondrial; acyl-CoA dehydrogenase long chain; Belongs to the acyl-CoA dehydrogenase family (430 aa)
ACADSShort-chain specific acyl-CoA dehydrogenase, mitochondrial; Introduces a double bond at position 2 in saturated acyl-CoA’s of short chain length, i.e. less than 6 carbon atoms; Belongs to the acyl-CoA dehydrogenase family (412 aa)
UBA2SUMO-activating enzyme subunit 2; The heterodimer acts as an E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2; Ubiquitin like modifier activating enzymes (640 aa)
SCLYSelenocysteine lyase; Catalyzes the decomposition of L-selenocysteine to L- alanine and elemental selenium; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family (453 aa)
LOXL4Lysyl oxidase homolog 4; May modulate the formation of a collagenous extracellular matrix; Scavenger receptor cysteine rich domain containing (756 aa)
ACAD8Isobutyryl-CoA dehydrogenase, mitochondrial; Has very high activity toward isobutyryl-CoA. Is an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Plays a role in transcriptional coactivation within the ARC complex; Acyl-CoA dehydrogenase family (415 aa)
ACOX1Peroxisomal acyl-coenzyme A oxidase 1; Catalyzes the desaturation of acyl-CoAs to 2-trans- enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy- palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl- CoA (660 aa)
ACOX2Peroxisomal acyl-coenzyme A oxidase 2; Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids; Belongs to the acyl-CoA oxidase family (681 aa)
ACAD9Acyl-CoA dehydrogenase family member 9, mitochondrial; Required for mitochondrial complex I assembly. Has a dehydrogenase activity on palmitoyl-CoA (C16-0) and stearoyl-CoA (C18-0). It is three times more active on palmitoyl-CoA than on stearoyl-CoA. However, it does not play a primary role in long-chain fatty acid oxidation in vivo. Has little activity on octanoyl-CoA (C8-0), butyryl-CoA (C4-0) or isovaleryl-CoA (5-0); Belongs to the acyl-CoA dehydrogenase family (621 aa)
ACOX3Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids; Belongs to the acyl-CoA oxidase family (700 aa)
LAGE3EKC/KEOPS complex subunit LAGE3; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. LAGE3 functions as a dimerization module for the complex (By similarity) (143 aa)
ZNF830Zinc finger protein 830; Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth, plays a role in oocyte survival by preventing chromosomal breaks for [...] (372 aa)
ACADSBShort/branched chain specific acyl-CoA dehydrogenase, mitochondrial; Has greatest activity toward short branched chain acyl- CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl- CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent (432 aa)
ACADMMedium-chain specific acyl-CoA dehydrogenase, mitochondrial; Acyl-CoA dehydrogenase specific for acyl chain lengths of 4 to 16 that catalyzes the initial step of fatty acid beta- oxidation. Utilizes the electron transfer flavoprotein (ETF) as an electron acceptor to transfer electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (454 aa)
SEPHS1Selenide, water dikinase 1; Synthesizes selenophosphate from selenide and ATP (392 aa)
SEPSECSO-phosphoseryl-tRNA(Sec) selenium transferase; Converts O-phosphoseryl-tRNA(Sec) to selenocysteinyl- tRNA(Sec) required for selenoprotein biosynthesis (501 aa)
SEC24AProtein transport protein Sec24A; Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex. Plays a central role in cargo selection within the COPII complex and together with SEC24B may have a different specificity compared to SEC24C and SEC24D. May package preferentially cargos with cytoplasmic DxE or LxxLE motifs and may [...] (1093 aa)
TXNRD2Thioredoxin reductase 2, mitochondrial; Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox- regulated cell signaling; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family (524 aa)
ACOXLAcyl-coenzyme A oxidase-like protein; acyl-CoA oxidase like; Belongs to the acyl-CoA oxidase family (580 aa)
SEPHS2Selenide, water dikinase 2; Synthesizes selenophosphate from selenide and ATP; Selenoproteins (483 aa)
CLIC3Chloride intracellular channel protein 3; Can insert into membranes and form chloride ion channels. May participate in cellular growth control; Belongs to the chloride channel CLIC family (236 aa)
ENDOVEndonuclease V; Endoribonuclease that specifically cleaves inosine- containing RNAs- cleaves RNA at the second phosphodiester bond 3’ to inosine. Has strong preference for single-stranded RNAs (ssRNAs) toward double-stranded RNAs (dsRNAs). Cleaves mRNAs and tRNAs containing inosine. Also able to cleave structure-specific dsRNA substrates containing the specific sites 5’-IIUI-3’ and 5’- UIUU-3’. Inosine is present in a number of RNAs following editing; the function of inosine-specific endoribonuclease is still unclear- it could either play a regulatory role in edited RNAs, or be involve [...] (282 aa)
TXNRD1Thioredoxin reductase 1, cytoplasmic; Isoform 1 may possess glutaredoxin activity as well as thioredoxin reductase activity and induces actin and tubulin polymerization, leading to formation of cell membrane protrusions. Isoform 4 enhances the transcriptional activity of estrogen receptors alpha and beta while isoform 5 enhances the transcriptional activity of the beta receptor only. Isoform 5 also mediates cell death induced by a combination of interferon-beta and retinoic acid; Glutaredoxin domain containing (649 aa)
RBM8ARNA-binding protein 8A; Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influenc [...] (174 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]