• Version:
  • 11.0 [archived version]
STRINGSTRING
SNRNP70 SNRNP70 PHF5A PHF5A PRPF38A PRPF38A SNRPA1 SNRPA1 LSM8 LSM8 LSM3 LSM3 SNRNP40 SNRNP40 LSM7 LSM7 SNRPD1 SNRPD1 SNRPD3 SNRPD3 LSM2 LSM2 RBM22 RBM22 CDC5L CDC5L SNRPF SNRPF SNRPC SNRPC EIF4A3 EIF4A3 PRPF19 PRPF19 SNRNP200 SNRNP200 TXNL4A TXNL4A SNRPD2 SNRPD2 SNRPE SNRPE PRPF3 PRPF3 SNRPB SNRPB SF3A2 SF3A2 SNRPG SNRPG PRPF8 PRPF8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RBM22Pre-mRNA-splicing factor RBM22; Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5’ splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses; Belongs to the SLT11 family (420 aa)
SNRPD3Small nuclear ribonucleoprotein Sm D3; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (126 aa)
PHF5APHD finger-like domain-containing protein 5A; Involved with the PAF1 complex (PAF1C) in transcriptional elongation by RNA polymerase II, and in regulation of development and maintenance of embryonic stem cell (ESC) pluripotency. Required for maintenance of ESCs self-renewal and cellular reprogramming of stem cells. Maintains pluripotency by recruiting and stabilizing PAF1C on pluripotency genes loci, and by regulating the expression of the pluripotency genes. Regulates the deposition of elongation-associated histone modifications, including dimethylated histone H3 ’Lys-79’ (H3K79me2) a [...] (110 aa)
SF3A2Splicing factor 3A subunit 2; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; Belongs to the SF3A2 family (464 aa)
PRPF19Pre-mRNA-processing factor 19; Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates ’Lys-63’-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex. Recruite [...] (504 aa)
SNRPCU1 small nuclear ribonucleoprotein C; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5’ splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5’ splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5’ end of the U1 snRNA and the 5’ splice-site region; Belongs to the U1 [...] (159 aa)
LSM8U6 snRNA-associated Sm-like protein LSm8; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (96 aa)
LSM7U6 snRNA-associated Sm-like protein LSm7; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (103 aa)
SNRPA1U2 small nuclear ribonucleoprotein A; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA; Belongs to the U2 small nuclear ribonucleoprotein A family (255 aa)
PRPF38APre-mRNA-splicing factor 38A; May be required for pre-mRNA splicing; Belongs to the PRP38 family (312 aa)
SNRNP40U5 small nuclear ribonucleoprotein 40 kDa protein; Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs; Spliceosomal Bact complex (357 aa)
SNRPFSmall nuclear ribonucleoprotein F; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (86 aa)
EIF4A3Eukaryotic initiation factor 4A-III; ATP-dependent RNA helicase. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all s [...] (411 aa)
TXNL4AThioredoxin-like protein 4A; Essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes that are involved in spliceosome assembly; Belongs to the DIM1 family (142 aa)
SNRPGSmall nuclear ribonucleoprotein G; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing (76 aa)
SNRPD1Small nuclear ribonucleoprotein Sm D1; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP- snRNP interactions through nonspecific [...] (119 aa)
LSM3U6 snRNA-associated Sm-like protein LSm3; Binds specifically to the 3’-terminal U-tract of U6 snRNA; Belongs to the snRNP Sm proteins family (102 aa)
PRPF3U4/U6 small nuclear ribonucleoprotein Prp3; Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (683 aa)
SNRNP200U5 small nuclear ribonucleoprotein 200 kDa helicase; RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (2136 aa)
SNRPD2Small nuclear ribonucleoprotein Sm D2; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (118 aa)
CDC5LCell division cycle 5-like protein; DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR); Myb/SANT domain containing (802 aa)
LSM2U6 snRNA-associated Sm-like protein LSm2; Binds specifically to the 3’-terminal U-tract of U6 snRNA. May be involved in pre-mRNA splicing; Belongs to the snRNP Sm proteins family (95 aa)
SNRPESmall nuclear ribonucleoprotein E; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing. May indirectly play a role in hair development (92 aa)
SNRPBSmall nuclear ribonucleoprotein-associated proteins B and B; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (240 aa)
PRPF8Pre-mRNA-processing-splicing factor 8; Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
SNRNP70U1 small nuclear ribonucleoprotein 70 kDa; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. SNRNP70 binds to the loop I region of U1-snRNA. The truncated isoforms cannot bind U1-snRNA; RNA binding motif containing (437 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]