• Version:
  • 11.0 [archived version]
STRINGSTRING
LCAT LCAT PLA2G12A PLA2G12A PLA2G1B PLA2G1B PLA2G6 PLA2G6 PLA2G4D PLA2G4D PLA2G3 PLA2G3 PLA2G2F PLA2G2F LPCAT1 LPCAT1 LPCAT4 LPCAT4 MBOAT2 MBOAT2 PLA2G2D PLA2G2D PLA2G15 PLA2G15 LYPLA1 LYPLA1 LPCAT2 LPCAT2 PNPLA6 PNPLA6 LPCAT3 LPCAT3 PLB1 PLB1 PLA2G16 PLA2G16 PNPLA7 PNPLA7 PLA2G12B PLA2G12B PLA2G4A PLA2G4A MBOAT1 MBOAT1 PLA2G5 PLA2G5 PLA2G2C PLA2G2C LYPLA2 LYPLA2 GPCPD1 GPCPD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PLA2G3Group 3 secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Shows an 11-fold preference for phosphatidylglycerol over phosphatidylcholine (PC). Preferential cleavage- 1-palmitoyl-2-linoleoyl- phosphatidylethanolamine (PE) > 1-palmitoyl-2-linoleoyl-PC > 1- palmitoyl-2-arachidonoyl-PC > 1-palmitoyl-2-arachidonoyl-PE. Plays a role in ciliogenesis; Phospholipases (509 aa)
PLA2G15Group XV phospholipase A2; Has transacylase and calcium-independent phospholipase A2 activity. Catalyzes the formation of 1-O-acyl-N-acetylsphingosine and the concomitant release of a lyso-phospholipid. Has high activity with 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), catalyzing the transfer of oleic acid to N-acetyl- sphingosine. Required for normal phospholipid degradation in alveolar and peritoneal macrophages and in spleen (By similarity). May have weak lysophospholipase activity; Phospholipases (412 aa)
PLA2G12AGroup XIIA secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Does not exhibit detectable activity toward sn-2-arachidonoyl- or linoleoyl- phosphatidylcholine or -phosphatidylethanolamine (189 aa)
PLA2G2CPutative inactive group IIC secretory phospholipase A2; Inactive phospholipase; Phospholipases (150 aa)
LPCAT3Lysophospholipid acyltransferase 5; Acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3- phosphocholine or PC) (LPCAT activity). Catalyzes also the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero- 3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl-sn- glycero-3-phospho-L-serine or PS) (LPSAT activity). Has also weak lysophosphatidylethanolamine acyltransferase activity (LPEAT activity). Favors polyunsaturated fatty acyl-CoAs as acyl donors com [...] (487 aa)
LPCAT2Lysophosphatidylcholine acyltransferase 2; Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-dependent. Involved in platelet- activating factor (PAF) biosynthesis by catalyzing the conversion of the PAF precursor, 1-O-alkyl-sn-glycero-3-phosphocholine (lyso- PAF) into 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF). Also converts lyso-PAF to 1-O-alkyl-2-acyl-sn-glycero-3- phosphocholine (PC), a major component of cell membranes and a PAF precursor. Under resting conditions, acyltransferase activity is preferred. Upon acute inflammatory stimulus, [...] (544 aa)
LCATPhosphatidylcholine-sterol acyltransferase; Central enzyme in the extracellular metabolism of plasma lipoproteins. Synthesized mainly in the liver and secreted into plasma where it converts cholesterol and phosphatidylcholines (lecithins) to cholesteryl esters and lysophosphatidylcholines on the surface of high and low density lipoproteins (HDLs and LDLs). The cholesterol ester is then transported back to the liver. Has a preference for plasma 16-0-18-2 or 18-O-18-2 phosphatidylcholines. Also produced in the brain by primary astrocytes, and esterifies free cholesterol on nascent APOE- [...] (440 aa)
LPCAT1Lysophosphatidylcholine acyltransferase 1; Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-independent (By similarity). Mediates the conversion of 1- acyl-sn-glycero-3-phosphocholine (LPC) into phosphatidylcholine (PC). Displays a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl or 1-palmitoyl LPC as acyl donors and acceptors, respectively. May synthesize phosphatidylcholine in pulmonary surfactant, thereby playing a pivotal role in respiratory physiology. Involved in the regulation of lipid droplet number and size (534 aa)
PLA2G4DCytosolic phospholipase A2 delta; Calcium-dependent phospholipase A2 that selectively hydrolyzes glycerophospholipids in the sn-2 position. May have a substrate specificity for linoleic acid at the sn-2 position; C2 domain containing phospholipases (818 aa)
MBOAT2Lysophospholipid acyltransferase 2; Acyltransferase which mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn-glycero-3- phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2- diacyl-sn-glycero-3-phosphoethanolamine or PE) (LPEAT activity). Catalyzes also the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA) (LPAAT activity). Has also a very weak lysophosphatidylcholine acyltransferase (LPCAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling [...] (520 aa)
PLA2G1BPhospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules; Belongs to the phospholipase A2 family (148 aa)
LPCAT4Lysophospholipid acyltransferase LPCAT4; Displays acyl-CoA-dependent lysophospholipid acyltransferase activity with a subset of lysophospholipids as substrates; converts lysophosphatidylethanolamine to phosphatidylethanolamine, lysophosphatidylcholine to phosphatidycholine, 1-alkenyl-lysophatidylethanolamine to 1- alkenyl-phosphatidylethanolamine, lysophosphatidylglycerol and alkyl-lysophosphatidylcholine to phosphatidylglycerol and alkyl- phosphatidylcholine, respectively. In contrast, has no lysophosphatidylinositol, glycerol-3-phosphate, diacylglycerol or lysophosphatidic acid acylt [...] (524 aa)
LYPLA1Acyl-protein thioesterase 1; Hydrolyzes fatty acids from S-acylated cysteine residues in proteins such as trimeric G alpha proteins or HRAS. Has depalmitoylating activity toward KCNMA1. Has low lysophospholipase activity; Belongs to the AB hydrolase superfamily. AB hydrolase 2 family (230 aa)
PLA2G16HRAS-like suppressor 3; Lipid-modifying enzyme that acts as major regulator of adipocyte lipolysis by catalyzing the release of fatty acids from phospholipids in adipose tissue. Shows phospholipase A1 and A2 activity, catalyzing the calcium- independent hydrolysis of acyl groups in various phosphatidylcholines (PC) and phosphatidylethanolamine (PE). For most substrates, phospholipase A1 activity is much higher than phospholipase A2 activity. Phospholipase activity causes decreased intracellular levels of ether-type lipids, affecting peroxisome metabolism (By similarity). May also have [...] (162 aa)
MBOAT1Lysophospholipid acyltransferase 1; Acyltransferase which mediates the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L- serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3- phospho-L-serine or PS) (LPSAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle; Membrane bound O-acyltransferases (495 aa)
PLB1Phospholipase B1, membrane-associated; Membrane-associated phospholipase. Exhibits a calcium- independent broad substrate specificity including phospholipase A2/lysophospholipase activity. Preferential hydrolysis at the sn-2 position of diacylphospholipids and diacyglycerol, whereas it shows no positional specificity toward triacylglycerol. Exhibits also esterase activity toward p-nitrophenyl. May act on the brush border membrane to facilitate the absorption of digested lipids (By similarity); Phospholipases (1458 aa)
PLA2G685/88 kDa calcium-independent phospholipase A2; Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F- actin polymerization at the pseudopods; Anky [...] (806 aa)
PLA2G4ACytosolic phospholipase A2; Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response; C2 domain containing phospholipases (749 aa)
PLA2G12BGroup XIIB secretory phospholipase A2-like protein; Not known; does not seem to have catalytic activity; Phospholipases (195 aa)
LYPLA2Acyl-protein thioesterase 2; Hydrolyzes fatty acids from S-acylated cysteine residues in proteins such as trimeric G alpha proteins, GAP43, ZDHHC6 or HRAS. Deacylates GAP43. Mediates depalmitoylation of ZDHHC6. Has lysophospholipase activity (By similarity) (231 aa)
PLA2G2FGroup IIF secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference; Belongs to the phospholipase A2 family (211 aa)
PLA2G2DGroup IID secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2- linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined (145 aa)
PLA2G5Calcium-dependent phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2- acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L- alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L- alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle (138 aa)
GPCPD1Glycerophosphocholine phosphodiesterase GPCPD1; May be involved in the negative regulation of skeletal muscle differentiation, independently of its glycerophosphocholine phosphodiesterase activity; Belongs to the glycerophosphoryl diester phosphodiesterase family (672 aa)
PNPLA7Patatin-like phospholipase domain-containing protein 7; Serine hydrolase, whose specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy; Patatin like phospholipase domain containing (1342 aa)
PNPLA6Neuropathy target esterase; Phospholipase B that deacylates intracellular phosphatidylcholine (PtdCho), generating glycerophosphocholine (GroPtdCho). This deacylation occurs at both sn-2 and sn-1 positions of PtdCho. Its specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy; Patatin like phospholipase domain containing (1375 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]