• Version:
  • 11.0 [archived version]
STRINGSTRING
SMG9 SMG9 NCBP2 NCBP2 N6AMT1 N6AMT1 PPP2R2A PPP2R2A RPS14 RPS14 PNRC2 PNRC2 UPF1 UPF1 GSPT2 GSPT2 SMG7 SMG7 GSPT1 GSPT1 SMG6 SMG6 RPS6 RPS6 CASC3 CASC3 MAGOHB MAGOHB TRMT112 TRMT112 ETF1 ETF1 SMG1 SMG1 RPS3A RPS3A SMG5 SMG5 PPP2CA PPP2CA SMG8 SMG8 RPS23 RPS23 MAGOH MAGOH RPS18 RPS18 PABPC1 PABPC1 GNB2L1 GNB2L1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SMG6Telomerase-binding protein EST1A; Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini. May have a general role in telomere regulation. Promotes in vitro the ability of TERT to elongate telomeres. Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization. Binds to the single-stranded 5’- (GTGTGG)(4)GTGT-3’ telomeric DNA, but not to a telomerase RNA template component (TER) (1419 aa)
CASC3Protein CASC3; Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downs [...] (703 aa)
SMG9Protein SMG9; Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG8 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required for the efficient association between SMG1 and SMG8. Plays a role in brain, heart, and eye development (By similarity); Belongs to the SMG9 family (520 aa)
RPS2340S ribosomal protein S23; Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through [...] (143 aa)
N6AMT1HemK methyltransferase family member 2; Heterodimeric methyltransferase that catalyzes N5- methylation of ETF1 on ’Gln-185’, using S-adenosyl L-methionine as methyl donor. ETF1 needs to be complexed to ERF3 in its GTP-bound form to be efficiently methylated. May play a role in the modulation of arsenic-induced toxicity. May be involved in the conversion of monomethylarsonous acid (3+) into the less toxic dimethylarsonic acid; Belongs to the eukaryotic/archaeal PrmC-related family (214 aa)
PABPC1Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r [...] (636 aa)
MAGOHBProtein mago nashi homolog 2; Involved in mRNA splicing and in the nonsense-mediated decay (NMD) pathway (148 aa)
PPP2R2ASerine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform; The B regulatory subunit might modulate substrate selectivity and catalytic activity, and also might direct the localization of the catalytic enzyme to a particular subcellular compartment; Protein phosphatase 2 regulatory subunits (457 aa)
NCBP2Nuclear cap-binding protein subunit 2; Component of the cap-binding complex (CBC), which binds co-transcriptionally to the 5’ cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5’ end of mRNA and to mRNA export in a 5’ to 3’ direction through the nuclear pore. The CBC [...] (156 aa)
PNRC2Proline-rich nuclear receptor coactivator 2; Involved in nonsense-mediated mRNA decay (NMD) by acting as a bridge between the mRNA decapping complex and the NMD machinery. May act by targeting the NMD machinery to the P-body and recruiting the decapping machinery to aberrant mRNAs. Required for UPF1/RENT1 localization to the P-body. Plays a role in glucocorticoid receptor-mediated mRNA degradation by interacting with the glucocorticoid receptor NR3C1 in a ligand-dependent manner when it is bound to the 5’ UTR of target mRNAs and recruiting the RNA helicase UPF1 and the mRNA-decapping e [...] (139 aa)
GSPT2Eukaryotic peptide chain release factor GTP-binding subunit ERF3B; Involved in translation termination in response to the termination codons UAA, UAG and UGA. May play a role as a potent stimulator of the release factor activity of ETF1. Exhibits GTPase activity, which is ribosome- and ETF1-dependent. May play a role in cell cycle progression. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (628 aa)
RPS3A40S ribosomal protein S3a; May play a role during erythropoiesis through regulation of transcription factor DDIT3; Belongs to the eukaryotic ribosomal protein eS1 family (264 aa)
ETF1Eukaryotic peptide chain release factor subunit 1; Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (437 aa)
SMG5Protein SMG5; Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity (1016 aa)
MAGOHProtein mago nashi homolog; Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby infl [...] (146 aa)
RPS640S ribosomal protein S6; May play an important role in controlling cell growth and proliferation through the selective translation of particular classes of mRNA; S ribosomal proteins (249 aa)
RPS14Ribosomal protein S14 (151 aa)
RPS1840S ribosomal protein S18; Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA; S ribosomal proteins (152 aa)
GSPT1Eukaryotic peptide chain release factor GTP-binding subunit ERF3A; Involved in translation termination in response to the termination codons UAA, UAG and UGA. Stimulates the activity of ERF1. Involved in regulation of mammalian cell growth. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. ERF3 subfamily (637 aa)
SMG1Serine/threonine-protein kinase SMG1; Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction comple [...] (3661 aa)
PPP2CASerine/threonine-protein phosphatase 2A catalytic subunit alpha isoform; PP2A is the major phosphatase for microtubule-associated proteins (MAPs). PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase. Cooperates with SGO2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate SV40 large T antigen and p53/TP53. Activates RAF1 by dephosphorylating it at ’Ser-259’; Belongs to the PPP phosphatase family. PP-1 subfamily (309 aa)
SMG7Protein SMG7; Plays a role in nonsense-mediated mRNA decay. Recruits UPF1 to cytoplasmic mRNA decay bodies. Together with SMG5 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (1178 aa)
GNB2L1Receptor of activated protein C kinase 1; (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses; Belongs to the WD repeat G protein beta family. Ribosomal protein RACK1 subfamily (317 aa)
TRMT112Multifunctional methyltransferase subunit TRM112-like protein; Acts as an activator of both rRNA/tRNA and protein methyltransferases. Together with methyltransferase BUD23, methylates the N(7) position of a guanine in 18S rRNA. The heterodimer with HEMK2/N6AMT1 catalyzes N5-methylation of ETF1 on ’Gln-185’, using S-adenosyl L- methionine as methyl donor. The heterodimer with ALKBH8 catalyzes the methylation of 5-carboxymethyl uridine to 5- methylcarboxymethyl uridine at the wobble position of the anticodon loop in target tRNA species. Involved in the pre-rRNA processing steps leading t [...] (125 aa)
SMG8Protein SMG8; Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome-SURF complex and to suppress SMG1 kinase activity until the ribosome-SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity (991 aa)
UPF1Regulator of nonsense transcripts 1; RNA-dependent helicase and ATPase required for nonsense- mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1- eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more [...] (1129 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]