• Version:
  • 11.0 [archived version]
STRINGSTRING
ZNF44 ZNF44 RPN2 RPN2 KDSR KDSR MOSPD1 MOSPD1 MOSPD3 MOSPD3 RDH13 RDH13 RPN1 RPN1 DDOST DDOST RAB1B RAB1B IDH3A IDH3A ETFA ETFA VAPA VAPA VAPB VAPB RAB1A RAB1A NAPSA NAPSA NBR1 NBR1 CHRNA3 CHRNA3 OXSM OXSM CHRNA6 CHRNA6 CHRNB4 CHRNB4 MINOS1 MINOS1 CHRNA2 CHRNA2 CHRNA4 CHRNA4 NUP35 NUP35 CHRNB2 CHRNB2 SCD5 SCD5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RPN2Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains; Belongs to the SWP1 family (631 aa)
NAPSANapsin-A; May be involved in processing of pneumocyte surfactant precursors (420 aa)
CHRNB4Neuronal acetylcholine receptor subunit beta-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta- 4/CHRNB4 sub-subfamily (498 aa)
CHRNA6Neuronal acetylcholine receptor subunit alpha-6; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha- 6/CHRNA6 sub-subfamily (494 aa)
OXSM3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; May play a role in the biosynthesis of lipoic acid as well as longer chain fatty acids required for optimal mitochondrial function; Belongs to the beta-ketoacyl-ACP synthases family (459 aa)
NUP35Nucleoporin NUP53; Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs). Can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC (326 aa)
RPN1Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains; Belongs to the OST1 family (607 aa)
IDH3AIsocitrate dehydrogenase [NAD] subunit alpha, mitochondrial; Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers (366 aa)
RAB1BRas-related protein Rab-1B; The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB1B regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. Plays a role in the initial events of the autophagic vacuole development which t [...] (201 aa)
CHRNA3Neuronal acetylcholine receptor subunit alpha-3; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Cholinergic receptors nicotinic subunits (505 aa)
SCD5Stearoyl-CoA desaturase 5; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA. Gives rise to a mixture of 16-1 and 18-1 unsaturated fatty acids (330 aa)
MINOS1MICOS complex subunit MIC10; Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (78 aa)
VAPAVesicle-associated membrane protein-associated protein A; VAMP associated protein A (294 aa)
ZNF44Zinc finger protein 44; May be involved in transcriptional regulation; Zinc fingers C2H2-type (663 aa)
CHRNB2Neuronal acetylcholine receptor subunit beta-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions; Cholinergic receptors nicotinic subunits (502 aa)
CHRNA4Neuronal acetylcholine receptor subunit alpha-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions; Cholinergic receptors nicotinic subunits (627 aa)
MOSPD1Motile sperm domain-containing protein 1; Plays a role in differentiation and/or proliferation of mesenchymal stem cells. Proposed to be involved in epithelial-to- mesenchymal transition (EMT). However, another study suggests that it is not required for EMT or stem cell self-renewal and acts during later stages of differentiation (213 aa)
MOSPD3Motile sperm domain containing 3 (235 aa)
CHRNA2Neuronal acetylcholine receptor subunit alpha-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Cholinergic receptors nicotinic subunits (529 aa)
KDSR3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family (332 aa)
RAB1ARas-related protein Rab-1A; The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB1A regulates vesicular protein transport from the endoplasmic reticulum (ER) to the Golgi compartment and on to the cell surface, and plays a role in IL-8 and growth hormone secreti [...] (205 aa)
RDH13Retinol dehydrogenase 13; Does not exhibit retinol dehydrogenase (RDH) activity in vitro; Short chain dehydrogenase/reductase superfamily (331 aa)
DDOSTDolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. Required for the assembly of both SST3A- and SS3B-containing OST complexes. Required for efficient N-glycosylation; Glutamine amidotransferase like class 1 domain containing (456 aa)
NBR1Next to BRCA1 gene 1 protein; Acts probably as a receptor for selective autophagosomal degradation of ubiquitinated targets; Zinc fingers ZZ-type (966 aa)
VAPBVesicle-associated membrane protein-associated protein B/C; Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity. Involved in cellular calcium homeostasis regulation (243 aa)
ETFAElectron transfer flavoprotein subunit alpha, mitochondrial; Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (333 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]