• Version:
  • 11.0 [archived version]
STRINGSTRING
YWHAH YWHAH ILF2 ILF2 YWHAE YWHAE ALYREF ALYREF ILF3 ILF3 NUFIP2 NUFIP2 EEF1A1 EEF1A1 DHX9 DHX9 CCAR2 CCAR2 DDX58 DDX58 ATXN2L ATXN2L ZC3HAV1 ZC3HAV1 EIF3A EIF3A PABPC1 PABPC1 CNOT1 CNOT1 CNOT3 CNOT3 TRIM28 TRIM28 GTPBP1 GTPBP1 PAN2 PAN2 CNOT7 CNOT7 MEX3C MEX3C HNRNPUL2 HNRNPUL2 AP2A1 AP2A1 HLA-A HLA-A AP2M1 AP2M1 AP2B1 AP2B1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GTPBP1GTP-binding protein 1; Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity) (669 aa)
NUFIP2Nuclear fragile X mental retardation-interacting protein 2; Binds RNA (695 aa)
ZC3HAV1Zinc finger CCCH-type antiviral protein 1; Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)- specific ribonuclease PARN to remove the poly(A) tail, and the 3’- 5’ exoribonuclease complex exosome to degrade the RNA body from the 3’-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from t [...] (902 aa)
YWHAH14-3-3 protein eta; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1; 14-3-3 phospho-serine/phospho-threonine binding proteins (246 aa)
TRIM28Transcription intermediary factor 1-beta; Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at ’Lys-9’ (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 ’Lys-9 and ’Lys-14’ acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression [...] (835 aa)
YWHAE14-3-3 protein epsilon; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner (By similarity). Positively regulates phosphorylated protein HSF1 nuclear export to the cytoplasm; Belongs to the 14-3-3 family (255 aa)
AP2M1AP-2 complex subunit mu; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but [...] (435 aa)
HNRNPUL2Heterogeneous nuclear ribonucleoprotein U like 2 (747 aa)
CCAR2Cell cycle and apoptosis regulator protein 2; Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing- the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis. Inhibits SUV39H1 methyltransferase activity. As part o [...] (923 aa)
PABPC1Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r [...] (636 aa)
CNOT1CCR4-NOT transcription complex subunit 1; Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA- mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mR [...] (2376 aa)
EEF1A1Elongation factor 1-alpha 1; This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. With PARP1 and TXK, forms a complex that acts as a T helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-Tu/EF-1A subfamily (462 aa)
CNOT3CCR4-NOT transcription complex subunit 3; Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic [...] (753 aa)
AP2A1AP-2 complex subunit alpha-1; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold [...] (977 aa)
ILF2Interleukin enhancer-binding factor 2; Appears to function predominantly as a heterodimeric complex with ILF3. This complex may regulate transcription of the IL2 gene during T-cell activation. It can also promote the formation of stable DNA-dependent protein kinase holoenzyme complexes on DNA. Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus (390 aa)
CNOT7CCR4-NOT transcription complex subunit 7; Has 3’-5’ poly(A) exoribonuclease activity for synthetic poly(A) RNA substrate. Its function seems to be partially redundant with that of CNOT8. Catalytic component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. During miRNA-mediated repression the complex seems also to act as translational repressor during translationa [...] (285 aa)
DHX9ATP-dependent RNA helicase A; Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3’ to 5’ direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing. Requires a 3’-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo- nucleotide triphosphates (NTPs). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA [...] (1270 aa)
EIF3AEukaryotic translation initiation factor 3 subunit A; RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF- 2-GTP-methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termi [...] (1382 aa)
DDX58Probable ATP-dependent RNA helicase DDX58; Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and proinflammatory cytokines. Its ligands include- 5’- triphosphorylated ssRNA and dsRNA and short dsRNA (<1 kb in length). In addition to the 5’-triphosphate moiety, blunt-end base pairing at the 5’-end of the RNA is very essential. Overhangs at the non-triphosphorylated end of the dsRNA RNA have no major impac [...] (925 aa)
ATXN2LAtaxin-2-like protein; Involved in the regulation of stress granule and P-body formation; Belongs to the ataxin-2 family (1097 aa)
HLA-AHLA class I histocompatibility antigen, A-3 alpha chain; Involved in the presentation of foreign antigens to the immune system; C1-set domain containing (365 aa)
MEX3CRNA-binding E3 ubiquitin-protein ligase MEX3C; E3 ubiquitin ligase responsible for the post- transcriptional regulation of common HLA-A allotypes. Binds to the 3’ UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation; Ring finger proteins (659 aa)
PAN2PAN2-PAN3 deadenylation complex catalytic subunit PAN2; Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3’-5’ exonucleolytic degradation, or deadenlyation-dependent [...] (1202 aa)
ILF3Interleukin enhancer-binding factor 3; RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back- splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs. As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Upon viral infection, ILF3 accumulates in the cytoplasm and participates i [...] (898 aa)
ALYREFTHO complex subunit 4; Export adapter involved in nuclear export of spliced and unspliced mRNA. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NFX1 pathway). Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region [...] (264 aa)
AP2B1AP-2 complex subunit beta; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold bu [...] (951 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]