• Version:
  • 11.0 [archived version]
STRINGSTRING
AMHR2 AMHR2 ACVR1 ACVR1 ACVR2A ACVR2A RIPK2 RIPK2 ACVR1C ACVR1C RIPK3 RIPK3 SRMS SRMS RIPK1 RIPK1 EPHA8 EPHA8 ERN2 ERN2 IDE IDE MAP3K10 MAP3K10 INS INS INSRR INSRR IRAK2 IRAK2 GSK3A GSK3A INS-IGF2 INS-IGF2 INSR INSR IGF1R IGF1R IRAK3 IRAK3 SPN SPN VPREB1 VPREB1 RAF1 RAF1 CSK CSK IGLL5 IGLL5 BLK BLK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
EPHA8Ephrin type-A receptor 8; Receptor tyrosine kinase which binds promiscuously GPI- anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. The GPI-anchored ephrin-A EFNA2, EFNA3, and EFNA5 are able to activate EPHA8 through phosphorylation. With EFNA5 may regulate integrin-mediated cell adhesion and migration on fibronectin sub [...] (1005 aa)
RIPK3Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes- GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (518 aa)
SRMSTyrosine-protein kinase Srms; Non-receptor tyrosine-protein kinase which phosphorylates DOK1 on tyrosine residues. May be involved in proliferation or differentiation of keratinocytes in the skin; SH2 domain containing (488 aa)
CSKTyrosine-protein kinase CSK; Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or ada [...] (450 aa)
RIPK2Receptor-interacting serine/threonine-protein kinase 2; Serine/threonine/tyrosine kinase that plays an essential role in modulation of innate and adaptive immune responses. Upon stimulation by bacterial peptidoglycans, NOD1 and NOD2 are activated, oligomerize and recruit RIPK2 through CARD-CARD domains. Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Once recruited, RIPK2 autophosphorylates and undergoes ’Lys-63’-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3 [...] (540 aa)
GSK3AGlycogen synthase kinase-3 alpha; Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1. Requires primed phosphorylation of the majority of its substrates. Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. Regulates glycogen metabolism in liver, but not in muscle. M [...] (483 aa)
ACVR2AActivin receptor type-2A; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A. Mediates induction of adipogenesis by GDF6 (By similarity); Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. TGFB receptor subfamily (513 aa)
ACVR1CActivin receptor type-1C; Serine/threonine protein kinase which forms a receptor complex on ligand binding. The receptor complex consisting of 2 type II and 2 type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators, SMAD2 and SMAD3. Receptor for activin AB, activin B and NODAL. Plays a role in cell differentiation, growth arrest and apoptosis (493 aa)
RAF1RAF proto-oncogene serine/threonine-protein kinase; Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kina [...] (648 aa)
MAP3K10Mitogen-activated protein kinase kinase kinase 10; Activates the JUN N-terminal pathway; Mitogen-activated protein kinase kinase kinases (954 aa)
IRAK2Interleukin-1 receptor-associated kinase-like 2; Binds to the IL-1 type I receptor following IL-1 engagement, triggering intracellular signaling cascades leading to transcriptional up-regulation and mRNA stabilization (625 aa)
ERN2Serine/threonine-protein kinase/endoribonuclease IRE2; Induces translational repression through 28S ribosomal RNA cleavage in response to ER stress. Pro-apoptotic. Appears to play no role in the unfolded-protein response, unlike closely related proteins; Belongs to the protein kinase superfamily. Ser/Thr protein kinase family (974 aa)
AMHR2Anti-Muellerian hormone type-2 receptor; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for anti-Muellerian hormone (573 aa)
BLKTyrosine-protein kinase Blk; Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling. B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis d [...] (505 aa)
RIPK1Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at ’Ser-728’ in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via ’Lys-63’-link chains acts as a critical enhancer of communication with do [...] (671 aa)
IRAK3Interleukin-1 receptor-associated kinase 3; Inhibits dissociation of IRAK1 and IRAK4 from the Toll- like receptor signaling complex by either inhibiting the phosphorylation of IRAK1 and IRAK4 or stabilizing the receptor complex; Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. Pelle subfamily (596 aa)
ACVR1Activin receptor type-1; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin. May be involved for left-right pattern formation during embryogenesis (By similarity) (509 aa)
IDEInsulin-degrading enzyme; Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays a role in intercellular peptide signaling. Degrades amyloid formed by APP and IAPP. May play a role in the degradation and clearance of naturally secreted amyloid beta-protein by neurons and microglia; M16 metallopeptidases (1019 aa)
IGF1RInsulin-like growth factor 1 receptor; Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc [...] (1367 aa)
INSRInsulin receptor; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src- homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the acti [...] (1382 aa)
SPNLeukosialin; One of the major glycoproteins of thymocytes and T lymphocytes. Plays a role in the physicochemical properties of the T-cell surface and in lectin binding. Presents carbohydrate ligands to selectins. Has an extended rodlike structure that could protrude above the glycocalyx of the cell and allow multiple glycan chains to be accessible for binding. Is a counter-receptor for SN/Siglec-1 (By similarity). During T-cell activation is actively removed from the T-cell-APC (antigen-presenting cell) contact site thus suggesting a negative regulatory role in adaptive immune response [...] (400 aa)
INSRRInsulin receptor-related protein; Receptor with tyrosine-protein kinase activity. Functions as a pH sensing receptor which is activated by increased extracellular pH. Activates an intracellular signaling pathway that involves IRS1 and AKT1/PKB (1297 aa)
INSInsulin; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver (110 aa)
INS-IGF2Insulin, isoform 2; INS-IGF2 readthrough (200 aa)
VPREB1Immunoglobulin iota chain; Associates with the Ig-mu chain to form a molecular complex that is expressed on the surface of pre-B-cells. This complex presumably regulates Ig gene rearrangements in the early steps of B-cell differentiation; CD molecules (145 aa)
IGLL5Immunoglobulin lambda like polypeptide 5; C1-set domain containing (214 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]