• Version:
  • 11.0 [archived version]
STRINGSTRING
PACSIN3 PACSIN3 REXO2 REXO2 P4HB P4HB GLOD4 GLOD4 EDEM3 EDEM3 HSPA5 HSPA5 HSPA1A HSPA1A GAPDH GAPDH ACSS1 ACSS1 HSPE1 HSPE1 HSPA4 HSPA4 HSPA9 HSPA9 HSP90AB1 HSP90AB1 SMPD2 SMPD2 HSP90AA1 HSP90AA1 HSPD1 HSPD1 PPP2R1A PPP2R1A LRRK2 LRRK2 TUBB4B TUBB4B SLC25A33 SLC25A33 GBAS GBAS CDC5L CDC5L LZTS2 LZTS2 SF3A2 SF3A2 CECR5 CECR5 TMCC2 TMCC2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SF3A2Splicing factor 3A subunit 2; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; Belongs to the SF3A2 family (464 aa)
GAPDHGlyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] (335 aa)
HSPE110 kDa heat shock protein, mitochondrial; Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per [...] (102 aa)
SMPD2Sphingomyelin phosphodiesterase 2; Converts sphingomyelin to ceramide. Hydrolyze 1-acyl-2- lyso-sn-glycero-3-phosphocholine (lyso-PC) and 1-O-alkyl-2-lyso- sn-glycero-3-phosphocholine (lyso-platelet-activating factor). The physiological substrate seems to be Lyso-PAF; Belongs to the neutral sphingomyelinase family (423 aa)
REXO2Oligoribonuclease, mitochondrial; 3’-to-5’ exoribonuclease specific for small oligoribonucleotides. Active on small (primarily </=5 nucleotides in length) single-stranded RNA and DNA oligomers. May have a role in cellular nucleotide recycling; Exonucleases (237 aa)
HSPA9Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (By similarity); Belongs to the heat shock protein 70 family (679 aa)
LRRK2Leucine-rich repeat serine/threonine-protein kinase 2; Positively regulates autophagy through a calcium- dependent activation of the CaMKK/AMPK signaling pathway. The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes. Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose 6 phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner. Regulates neuronal process morphology in the intact [...] (2527 aa)
GLOD4Glyoxalase domain containing 4 (298 aa)
HSPA4Heat shock protein family A member 4; Belongs to the heat shock protein 70 family (840 aa)
SLC25A33Solute carrier family 25 member 33; Mitochondrial transporter that imports/exports pyrimidine nucleotides into and from mitochondria. Transports preferentially uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism. Also transports guanine but not adenine (deoxy)nucleotides. Is inhibited strongly by pyridoxal 5’-phosphate, 4,7-diphenyl-1,10- phenanthroline, tannic acid, and mercurials (mercury dichloride, mersalyl acid, p-hydroxymercuribenzoate). Participates in mitochondrial genome maintenance, regulation of mitochondrial membrane potential and [...] (321 aa)
GBASProtein NipSnap homolog 2; May act as a positive regulator of L-type calcium channels; Belongs to the NipSnap family (286 aa)
ACSS1Acetyl-coenzyme A synthetase 2-like, mitochondrial; Important for maintaining normal body temperature during fasting and for energy homeostasis. Essential for energy expenditure under ketogenic conditions (By similarity). Converts acetate to acetyl-CoA so that it can be used for oxidation through the tricarboxylic cycle to produce ATP and CO(2); Belongs to the ATP-dependent AMP-binding enzyme family (689 aa)
EDEM3ER degradation-enhancing alpha-mannosidase-like protein 3; Involved in endoplasmic reticulum-associated degradation (ERAD). Accelerates the glycoprotein ERAD by proteasomes, by catalyzing mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 in the N-glycans. Seems to have alpha 1,2-mannosidase activity (By similarity) (932 aa)
HSPA578 kDa glucose-regulated protein; Plays a role in facilitating the assembly of multimeric protein complexes inside the endoplasmic reticulum. Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10, probably to facilitate the release of DNAJC10 from its substrate (By similarity); Belongs to the heat shock protein 70 family (654 aa)
PPP2R1ASerine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform; The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. Upon interaction with GNA12 promotes dephosphorylation of microtubule associated protein TAU/MAPT. Required for proper chromosome segregation and for centromeric localization of SGO1 in mitosis (589 aa)
P4HBProtein disulfide-isomerase; This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations, functions as a chaperone that inhibits aggregation of misfolded proteins. At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chape [...] (508 aa)
HSP90AA1Heat shock protein HSP 90-alpha; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a ra [...] (854 aa)
CECR5Haloacid dehalogenase-like hydrolase domain-containing 5; Cat eye syndrome chromosome region, candidate 5 (423 aa)
TUBB4BTubulin beta-4B chain; Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain; Belongs to the tubulin family (445 aa)
TMCC2Transmembrane and coiled-coil domains protein 2; May be involved in the regulation of the proteolytic processing of the amyloid precursor protein (APP) possibly also implicating APOE; Transmembrane and coiled-coil domain containing (709 aa)
LZTS2Leucine zipper putative tumor suppressor 2; Negative regulator of katanin-mediated microtubule severing and release from the centrosome. Required for central spindle formation and the completion of cytokinesis. May negatively regulate axonal outgrowth by preventing the formation of microtubule bundles that are necessary for transport within the elongating axon. Negative regulator of the Wnt signaling pathway. Represses beta-catenin-mediated transcriptional activation by promoting the nuclear exclusion of beta-catenin; Belongs to the LZTS2 family (669 aa)
CDC5LCell division cycle 5-like protein; DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR); Myb/SANT domain containing (802 aa)
HSP90AB1Heat shock protein HSP 90-beta; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interacti [...] (724 aa)
HSPA1AHeat shock 70 kDa protein 1A; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and AD [...] (641 aa)
HSPD160 kDa heat shock protein, mitochondrial; Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per rin [...] (573 aa)
PACSIN3Protein kinase C and casein kinase substrate in neurons protein 3; Plays a role in endocytosis and regulates internalization of plasma membrane proteins. Overexpression impairs internalization of SLC2A1/GLUT1 and TRPV4 and increases the levels of SLC2A1/GLUT1 and TRPV4 at the cell membrane. Inhibits the TRPV4 calcium channel activity (By similarity); F-BAR domain containing (424 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]