• Version:
  • 11.0 [archived version]
STRINGSTRING
MTA2 MTA2 GATAD2B GATAD2B PML PML GATAD2A GATAD2A BRPF3 BRPF3 AKT3 AKT3 TP53 TP53 RBBP4 RBBP4 BRPF1 BRPF1 BRD1 BRD1 RBBP7 RBBP7 HIST1H3B HIST1H3B HIST1H3A HIST1H3A HIST3H3 HIST3H3 HIST2H3PS2 HIST2H3PS2 HIST1H3I HIST1H3I HIST1H3C HIST1H3C HIST1H3J HIST1H3J HIST1H3E HIST1H3E HIST2H3C HIST2H3C HIST1H3H HIST1H3H HIST1H3D HIST1H3D HIST1H3F HIST1H3F HIST2H3D HIST2H3D HIST1H3G HIST1H3G HIST2H3A HIST2H3A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
BRD1Bromodomain-containing protein 1; Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity; Bromodomain containing (1058 aa)
AKT3RAC-gamma serine/threonine-protein kinase; AKT3 is one of 3 closely related serine/threonine- protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial f [...] (479 aa)
PMLProtein PML; Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression- activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respe [...] (882 aa)
TP53Cellular tumor antigen p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in [...] (393 aa)
MTA2Metastasis-associated protein MTA2; May be involved in the regulation of gene expression as repressor and activator. The repression might be related to covalent modification of histone proteins; GATA zinc finger domain containing (668 aa)
HIST2H3DHistone cluster 2 H3 family member d; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
BRPF3Bromodomain and PHD finger-containing protein 3; Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity; Bromodomain containing (1205 aa)
HIST1H3JHistone cluster 1 H3 family member j; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
GATAD2ATranscriptional repressor p66-alpha; Transcriptional repressor. Enhances MBD2-mediated repression. Efficient repression requires the presence of GATAD2B; GATA zinc finger domain containing (633 aa)
HIST3H3Histone H3.1t; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
GATAD2BTranscriptional repressor p66-beta; Transcriptional repressor. Enhances MBD2-mediated repression. Efficient repression requires the presence of GATAD2A. Targets MBD3 to discrete loci in the nucleus. May play a role in synapse development; GATA zinc finger domain containing (593 aa)
HIST2H3CHistone cluster 2 H3 family member c; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3HHistone cluster 1 H3 family member h; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
RBBP4Histone-binding protein RBBP4; Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome re [...] (425 aa)
HIST1H3DHistone cluster 1 H3 family member d; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
RBBP7Histone-binding protein RBBP7; Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and [...] (469 aa)
BRPF1Peregrin; Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. Preferentially mediates histone H3-K23 acetylation. Positively regulates the transcription of RUNX1 and RUNX2; Bromodomain containing (1220 aa)
HIST2H3AHistone H3.2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST2H3PS2Histone cluster 2 H3 pseudogene 2 (136 aa)
HIST1H3AHistone cluster 1 H3 family member a; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3EHistone cluster 1 H3 family member e; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3IHistone cluster 1 H3 family member i; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3FHistone cluster 1 H3 family member f; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3GHistone cluster 1 H3 family member g; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3CHistone cluster 1 H3 family member c; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
HIST1H3BHistone H3.1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]