• Version:
  • 11.0 [archived version]
STRINGSTRING
BMP3 BMP3 GDF7 GDF7 BMP6 BMP6 MSTN MSTN GDF1 GDF1 GDF6 GDF6 TGFB1 TGFB1 LEFTY1 LEFTY1 INHBA INHBA MRC2 MRC2 GTPBP1 GTPBP1 TGFB3 TGFB3 GDF11 GDF11 NODAL NODAL CER1 CER1 INHBB INHBB INHBE INHBE HSPA1A HSPA1A BMP2 BMP2 INHA INHA FN1 FN1 BMP10 BMP10 BMP4 BMP4 AMH AMH BMP15 BMP15 GDF15 GDF15
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GTPBP1GTP-binding protein 1; Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity) (669 aa)
AMHMuellerian-inhibiting factor; This glycoprotein, produced by the Sertoli cells of the testis, causes regression of the Muellerian duct. It is also able to inhibit the growth of tumors derived from tissues of Muellerian duct origin; Endogenous ligands (560 aa)
TGFB1Transforming growth factor beta-1; Multifunctional protein that controls proliferation, differentiation and other functions in many cell types. Many cells synthesize TGFB1 and have specific receptors for it. It positively and negatively regulates many other growth factors. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts (By similarity). Stimulates sustained production of collagen through the activation of CREB3L1 by regulated intramembrane proteolysi [...] (390 aa)
TGFB3Transforming growth factor beta-3; Involved in embryogenesis and cell differentiation; Belongs to the TGF-beta family (412 aa)
INHBAInhibin beta A chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins; Belongs to the TGF-beta family (426 aa)
INHAInhibin alpha chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins; Belongs to the TGF-beta family (366 aa)
BMP4Bone morphogenetic protein 4; Induces cartilage and bone formation. Also act in mesoderm induction, tooth development, limb formation and fracture repair. Acts in concert with PTHLH/PTHRP to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction (By similarity); Bone morphogenetic proteins (408 aa)
GDF1Growth differentiation factor 1; May mediate cell differentiation events during embryonic development; Endogenous ligands (372 aa)
BMP15Bone morphogenetic protein 15; May be involved in follicular development. Oocyte- specific growth/differentiation factor that stimulates folliculogenesis and granulosa cell (GC) growth; Bone morphogenetic proteins (392 aa)
GDF15Growth differentiation factor 15; Belongs to the TGF-beta family (308 aa)
GDF11Growth/differentiation factor 11; Secreted signal that acts globally to specify positional identity along the anterior/posterior axis during development. May play critical roles in patterning both mesodermal and neural tissues and in establishing the skeletal pattern (By similarity). Signals through activin receptors type-2, ACVR2A and ACVR2B, and activin receptors type-1, ACVR1B, ACVR1C and TGFBR1 leading to the phosphorylation of SMAD2 and SMAD3; Belongs to the TGF-beta family (407 aa)
MSTNGrowth/differentiation factor 8; Acts specifically as a negative regulator of skeletal muscle growth; Belongs to the TGF-beta family (375 aa)
INHBEInhibin beta E chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins (350 aa)
LEFTY1Left-right determination factor 1; Required for left-right axis determination as a regulator of LEFTY2 and NODAL (366 aa)
GDF7Growth/differentiation factor 7; May play an active role in the motor area of the primate neocortex (450 aa)
BMP3Bone morphogenetic protein 3; Negatively regulates bone density. Antagonizes the ability of certain osteogenic BMPs to induce osteoprogenitor differentitation and ossification; Bone morphogenetic proteins (472 aa)
BMP6Bone morphogenetic protein 6; Induces cartilage and bone formation; Bone morphogenetic proteins (513 aa)
GDF6Growth/differentiation factor 6; Growth factor that controls proliferation and cellular differentiation in the retina and bone formation. Plays a key role in regulating apoptosis during retinal development. Establishes dorsal-ventral positional information in the retina and controls the formation of the retinotectal map. Required for normal formation of bones and joints in the limbs, skull, digits and axial skeleton. Plays a key role in establishing boundaries between skeletal elements during development. Regulation of GDF6 expression seems to be a mechanism for evolving species-specif [...] (455 aa)
NODALNodal homolog; Essential for mesoderm formation and axial patterning during embryonic development; Belongs to the TGF-beta family (347 aa)
INHBBInhibin beta B chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins; Endogenous ligands (407 aa)
BMP10Bone morphogenetic protein 10; Required for maintaining the proliferative activity of embryonic cardiomyocytes by preventing premature activation of the negative cell cycle regulator CDKN1C/p57KIP and maintaining the required expression levels of cardiogenic factors such as MEF2C and NKX2-5. Acts as a ligand for ACVRL1/ALK1, BMPR1A/ALK3 and BMPR1B/ALK6, leading to activation of SMAD1, SMAD5 and SMAD8 transcription factors. Inhibits endothelial cell migration and growth. May reduce cell migration and cell matrix adhesion in breast cancer cell lines; Belongs to the TGF-beta family (424 aa)
MRC2C-type mannose receptor 2; May play a role as endocytotic lectin receptor displaying calcium-dependent lectin activity. Internalizes glycosylated ligands from the extracellular space for release in an endosomal compartment via clathrin-mediated endocytosis. May be involved in plasminogen activation system controlling the extracellular level of PLAUR/PLAU, and thus may regulate protease activity at the cell surface. May contribute to cellular uptake, remodeling and degradation of extracellular collagen matrices. May play a role during cancer progression as well as in other chronic tissu [...] (1479 aa)
FN1Fibronectin type III domain containing; Endogenous ligands (2477 aa)
HSPA1AHeat shock 70 kDa protein 1A; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and AD [...] (641 aa)
BMP2Bone morphogenetic protein 2; Induces cartilage and bone formation. Stimulates the differentiation of myoblasts into osteoblasts via the EIF2AK3-EIF2A- ATF4 pathway. BMP2 activation of EIF2AK3 stimulates phosphorylation of EIF2A which leads to increased expression of ATF4 which plays a central role in osteoblast differentiation. In addition stimulates TMEM119, which upregulates the expression of ATF4; Belongs to the TGF-beta family (396 aa)
CER1Cerberus; Cytokine that may play a role in anterior neural induction and somite formation during embryogenesis in part through a BMP-inhibitory mechanism. Can regulate Nodal signaling during gastrulation as well as the formation and patterning of the primitive streak (By similarity); Belongs to the DAN family (267 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]