• Version:
  • 11.0 [archived version]
STRINGSTRING
SDHA SDHA ACN9 ACN9 SDHB SDHB HSPA9 HSPA9 SDHAF1 SDHAF1 HSCB HSCB ISCU ISCU
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
HSCBIron-sulfur cluster co-chaperone protein HscB, mitochondrial; Acts as a co-chaperone in iron-sulfur cluster assembly in mitochondria; Belongs to the HscB family (235 aa)
SDHASuccinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily (664 aa)
HSPA9Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (By similarity); Belongs to the heat shock protein 70 family (679 aa)
ISCUIron-sulfur cluster assembly enzyme ISCU, mitochondrial; Scaffold protein for the de novo synthesis of iron- sulfur (Fe-S) clusters within mitochondria, which is required for maturation of both mitochondrial and cytoplasmic [2Fe-2S] and [4Fe-4S] proteins. First, a [2Fe-2S] cluster is transiently assembled on the scaffold protein ISCU. In a second step, the cluster is released from ISCU, transferred to a glutaredoxin GLRX5, followed by the formation of mitochondrial [2Fe-2S] proteins, the synthesis of [4Fe-4S] clusters and their target-specific insertion into the recipient apoproteins. [...] (167 aa)
SDHBSuccinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (280 aa)
SDHAF1Succinate dehydrogenase assembly factor 1, mitochondrial; Plays an essential role in the assembly of succinate dehydrogenase (SDH), an enzyme complex (also referred to as respiratory complex II) that is a component of both the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain, and which couples the oxidation of succinate to fumarate with the reduction of ubiquinone (coenzyme Q) to ubiquinol. Promotes maturation of the iron-sulfur protein subunit SDHB of the SDH catalytic dimer, protecting it from the deleterious effects of oxidants. May act together with SDH [...] (115 aa)
ACN9Succinate dehydrogenase assembly factor 3, mitochondrial; Plays an essential role in the assembly of succinate dehydrogenase (SDH), an enzyme complex (also referred to as respiratory complex II) that is a component of both the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain, and which couples the oxidation of succinate to fumarate with the reduction of ubiquinone (coenzyme Q) to ubiquinol. Promotes maturation of the iron-sulfur protein subunit SDHB of the SDH catalytic dimer, protecting it from the deleterious effects of oxidants. May act together with SDHAF1 (125 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]