• Version:
  • 11.0 [archived version]
STRINGSTRING
PSMD11 PSMD11 PSMD7 PSMD7 PSMD3 PSMD3 PRPF19 PRPF19 PSMC1 PSMC1 EWSR1 EWSR1 PSMC4 PSMC4 HNRNPU HNRNPU NDUFV1 NDUFV1 ATP5F1 ATP5F1 ATP6V0D1 ATP6V0D1 FGFR1OP2 FGFR1OP2 ATP5A1 ATP5A1 ATP5D ATP5D NDUFS1 NDUFS1 TIMMDC1 TIMMDC1 TOMM22 TOMM22 SLC25A3 SLC25A3 LAMTOR3 LAMTOR3 MTCH1 MTCH1 ILVBL ILVBL ABCB7 ABCB7 PSEN1 PSEN1 EDEM1 EDEM1 FASN FASN TPM3 TPM3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PSMC426S proteasome regulatory subunit 6B; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC4 belongs to the heterohexameric ring of AAA (ATPases associated wit [...] (418 aa)
ATP5DATP synthase subunit delta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (168 aa)
TOMM22Mitochondrial import receptor subunit TOM22 homolog; Central receptor component of the translocase of the outer membrane of mitochondria (TOM complex) responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with the peripheral receptor TOM20 functions as the transit peptide receptor and facilitates the movement of preproteins into the translocation pore; Belongs to the Tom22 family (142 aa)
PSMD726S proteasome non-ATPase regulatory subunit 7; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair; Belongs to the peptidase M67A family (324 aa)
PRPF19Pre-mRNA-processing factor 19; Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates ’Lys-63’-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex. Recruite [...] (504 aa)
SLC25A3Phosphate carrier protein, mitochondrial; Transport of phosphate groups from the cytosol to the mitochondrial matrix. Phosphate is cotransported with H(+). May play a role regulation of the mitochondrial permeability transition pore (mPTP); Solute carriers (362 aa)
FGFR1OP2FGFR1 oncogene partner 2; May be involved in wound healing pathway; Belongs to the SIKE family (253 aa)
ABCB7ATP-binding cassette sub-family B member 7, mitochondrial; Could be involved in the transport of heme from the mitochondria to the cytosol. Plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins; ATP binding cassette subfamily B (753 aa)
EDEM1ER degradation-enhancing alpha-mannosidase-like protein 1; Extracts misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. It is directly involved in endoplasmic reticulum-associated degradation (ERAD) and targets misfolded glycoproteins for degradation in an N-glycan-independent manner, probably by forming a complex with SEL1L. It has low mannosidase activity, catalyzing mannose trimming from Man8GlcNAc2 to Man7GlcNAc2; Belongs to the glycosyl hydrolase 47 family (657 aa)
PSMC126S proteasome regulatory subunit 4; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with [...] (440 aa)
PSMD1126S proteasome non-ATPase regulatory subunit 11; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. In the complex, PSMD11 is required for proteasome assembly. P [...] (422 aa)
ILVBLAcetolactate synthase-like protein; ilvB acetolactate synthase like (632 aa)
PSMD326S proteasome non-ATPase regulatory subunit 3; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair; Belongs to the proteasome subunit S3 family (534 aa)
HNRNPUHeterogeneous nuclear ribonucleoprotein U; DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression. Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin- associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability. Required for the localization of the long non-coding Xist RNA on the inacti [...] (825 aa)
ATP6V0D1V-type proton ATPase subunit d 1; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. May play a role in coupling of proton transport and ATP hydrolysis (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (By similarity). In aerobic conditions, involved in intracellular iron homeostasis, thus tri [...] (351 aa)
FASNFatty acid synthase; Fatty acid synthetase catalyzes the formation of long- chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities and an acyl carrier protein; Seven-beta-strand methyltransferase motif containing (2511 aa)
NDUFV1NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity) (464 aa)
PSEN1Presenilin-1; Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the presence of the other members of the gamma-secretase complex for protease activity. Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels. Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the compl [...] (467 aa)
TPM3Tropomyosin alpha-3 chain; Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments; Belongs to the tropomyosin family (285 aa)
ATP5F1ATP synthase F(0) complex subunit B1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechani [...] (256 aa)
MTCH1Mitochondrial carrier homolog 1; Potential mitochondrial transporter. May play a role in apoptosis; Solute carriers (389 aa)
ATP5A1ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (553 aa)
NDUFS1NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized; NADH-u [...] (741 aa)
EWSR1RNA-binding protein EWS; Might normally function as a transcriptional repressor. EWS-fusion-proteins (EFPS) may play a role in the tumorigenic process. They may disturb gene expression by mimicking, or interfering with the normal function of CTD-POLII within the transcription initiation complex. They may also contribute to an aberrant activation of the fusion protein target genes; Belongs to the RRM TET family (661 aa)
TIMMDC1Complex I assembly factor TIMMDC1, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I (285 aa)
LAMTOR3Ragulator complex protein LAMTOR3; As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. Adapter protein that enhances the efficiency of the MAP ki [...] (124 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]