• Version:
  • 11.0 [archived version]
STRINGSTRING
APH1B APH1B PDCD7 PDCD7 YBX1 YBX1 POLR2I POLR2I SF3B6 SF3B6 CPSF3 CPSF3 LSM7 LSM7 SYF2 SYF2 SRSF1 SRSF1 SRSF6 SRSF6 PRPF38A PRPF38A AQR AQR PPWD1 PPWD1 RBM22 RBM22 SNRPB2 SNRPB2 SNRPA SNRPA CSTF1 CSTF1 GPKOW GPKOW SYMPK SYMPK LSM8 LSM8 PAPOLA PAPOLA SUGP1 SUGP1 SNRPC SNRPC WBP11 WBP11 SF3A1 SF3A1 SNRNP27 SNRNP27
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GPKOWG-patch domain and KOW motifs (476 aa)
AQRIntron-binding protein aquarius; Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis. Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly. May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing; Belongs to the CWF11 family (1485 aa)
RBM22Pre-mRNA-splicing factor RBM22; Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5’ splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses; Belongs to the SLT11 family (420 aa)
PDCD7Programmed cell death protein 7; Promotes apoptosis when overexpressed; U11/U12 di-snRNP (485 aa)
SF3A1Splicing factor 3A subunit 1; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; U2 small nucleolar ribonucleoprotein (793 aa)
PAPOLAPoly(A) polymerase alpha; Polymerase that creates the 3’-poly(A) tail of mRNA’s. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus (745 aa)
CSTF1Cleavage stimulation factor subunit 1; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
POLR2IDNA-directed RNA polymerase II subunit RPB9; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity) (125 aa)
SF3B6Splicing factor 3B subunit 6; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch si [...] (125 aa)
SYF2Pre-mRNA-splicing factor SYF2; May be involved in pre-mRNA splicing; Belongs to the SYF2 family (243 aa)
CPSF3Cleavage and polyadenylation specificity factor subunit 3; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ t [...] (684 aa)
SNRPAU1 small nuclear ribonucleoprotein A; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. U1 snRNP is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. SNRPA binds stem loop II of U1 snRNA. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. May bind preferentially to the 5’-UGCAC-3’ motif on RNAs; Belongs to the RRM U1 A/B’’ family (282 aa)
SRSF6Serine/arginine-rich splicing factor 6; Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing; Belongs to the splicing factor SR family (344 aa)
SNRNP27U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein; May play a role in mRNA splicing (155 aa)
SNRPCU1 small nuclear ribonucleoprotein C; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5’ splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5’ splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5’ end of the U1 snRNA and the 5’ splice-site region; Belongs to the U1 [...] (159 aa)
SYMPKSymplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3’-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house- keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity; Belongs to the Symplekin family (1274 aa)
SNRPB2U2 small nuclear ribonucleoprotein B’; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein; RNA binding motif containing (225 aa)
SUGP1SURP and G-patch domain-containing protein 1; Plays a role in pre-mRNA splicing; G-patch domain containing (645 aa)
LSM8U6 snRNA-associated Sm-like protein LSm8; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (96 aa)
LSM7U6 snRNA-associated Sm-like protein LSm7; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (103 aa)
PRPF38APre-mRNA-splicing factor 38A; May be required for pre-mRNA splicing; Belongs to the PRP38 family (312 aa)
SRSF1Serine/arginine-rich splicing factor 1; Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5’- and 3’-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5’-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5’-RGAAGAAC-3’ (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5’- CGAGGCG-3’ motif in vitro. Three copies of the octame [...] (248 aa)
WBP11WW domain-binding protein 11; Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity; Protein phosphatase 1 regulatory subunits (641 aa)
PPWD1Peptidylprolyl isomerase domain and WD repeat-containing protein 1; Putative peptidylprolyl isomerase (PPIase). PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. May be involved in pre-mRNA splicing; Cyclophilin peptidylprolyl isomerases (646 aa)
APH1BGamma-secretase subunit APH-1B; Probable subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral proteins such as Notch receptors and APP (amyloid-beta precursor protein). It probably represents a stabilizing cofactor for the presenilin homodimer that promotes the formation of a stable complex. Probably present in a minority of gamma-secretase complexes compared to APH1A (257 aa)
YBX1Nuclease-sensitive element-binding protein 1; Mediates pre-mRNA alternative splicing regulation. Binds to splice sites in pre-mRNA and regulates splice site selection. Binds and stabilizes cytoplasmic mRNA. Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Regulates the transcription of numerous genes. Its transcriptional activity on the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at ’Lys-6’ and ’Lys-7’. Binds to promoters that contain a Y-box (5’-CTGATTG [...] (324 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]