• Version:
  • 11.0 [archived version]
STRINGSTRING
SDCBP SDCBP BRINP2 BRINP2 BRINP3 BRINP3 CANX CANX EDEM2 EDEM2 ATP5G1 ATP5G1 NR1D1 NR1D1 NR1D2 NR1D2 TP53 TP53 RDH14 RDH14
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NR1D1Nuclear receptor subfamily 1 group D member 1; Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components ARTNL/BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for [...] (614 aa)
CANXCalnexin; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor- mediated endocytosis at [...] (592 aa)
SDCBPSyntenin-1; Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis. Positively regulates TGFB1- mediated SMAD2/3 activation and TGFB1-induced epithelial-to- mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1. In concert with SDC1/4 and PDCD6I [...] (298 aa)
TP53Cellular tumor antigen p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in [...] (393 aa)
NR1D2Nuclear receptor subfamily 1 group D member 2; Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components ARNTL/BMAL1 and CLOCK. Also regulates genes involved in metabolic functions, including lipid metabolism and the inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 co [...] (579 aa)
BRINP2BMP/retinoic acid-inducible neural-specific protein 2; Inhibits neuronal cell proliferation by negative regulation of the cell cycle transition (783 aa)
BRINP3BMP/retinoic acid-inducible neural-specific protein 3; Inhibits neuronal cell proliferation by negative regulation of the cell cycle transition. Promotes pituitary gonadotrope cell proliferation, migration and invasion, when overexpressed. May play a role in cell pituitary tumor development; Belongs to the BRINP family (766 aa)
EDEM2ER degradation-enhancing alpha-mannosidase-like protein 2; Initiates the endoplasmic reticulum-associated degradation (ERAD) that targets misfolded glycoproteins for degradation in an N-glycan-dependent manner. Catalyzes the first mannose trimming step, from Man9GlcNAc2 to Man8GlcNAc2. Extracts misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle; Belongs to the glycosyl hydrolase 47 family (578 aa)
RDH14Retinol dehydrogenase 14; Exhibits an oxidoreductive catalytic activity towards retinoids. Most efficient as an NADPH-dependent retinal reductase. Displays high activity toward 9-cis and all-trans-retinol. No steroid dehydrogenase activity detected; Short chain dehydrogenase/reductase superfamily (336 aa)
ATP5G1ATP synthase F(0) complex subunit C1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...] (136 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]