• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP2C1 ATP2C1 AKAP7 AKAP7 TMEM79 TMEM79 ATP2B3 ATP2B3 ASCC1 ASCC1 ATP2C2 ATP2C2 PRKACA PRKACA ATP2B2 ATP2B2 ATP1A1 ATP1A1 ATP1A4 ATP1A4 ATP2B4 ATP2B4 ATP1A3 ATP1A3 ATP1A2 ATP1A2 ATP4A ATP4A ATP12A ATP12A ATP2A3 ATP2A3 ATP2A2 ATP2A2 PLN PLN ATP2A1 ATP2A1 S100A1 S100A1 LDLRAD1 LDLRAD1 DMPK DMPK SLN SLN BCL2L13 BCL2L13 PPP1R3A PPP1R3A EDA EDA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ATP12APotassium-transporting ATPase alpha chain 2; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for potassium absorption in various tissues; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1045 aa)
ATP4APotassium-transporting ATPase alpha chain 1; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for acid production in the stomach; ATPase H+/K+ transporting (1035 aa)
ATP2B3Plasma membrane calcium-transporting ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell; ATPases Ca2+ transporting (1220 aa)
PPP1R3AProtein phosphatase 1 regulatory subunit 3A; Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity); Protein phosphatase 1 regulatory subunits (1122 aa)
S100A1Protein S100-A1; Probably acts as a Ca(2+) signal transducer. In response to an increase in intracellular Ca(2+) levels, binds calcium which triggers a conformational change. This conformational change allows interaction of S1001A with specific target proteins, such as TPR- containing proteins, and the modulation of their activity; Belongs to the S-100 family (94 aa)
PRKACAcAMP-dependent protein kinase catalytic subunit alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the [...] (351 aa)
ASCC1Activating signal cointegrator 1 complex subunit 1; Enhances NF-kappa-B, SRF and AP1 transactivation. In cells responding to gastrin-activated paracrine signals, it is involved in the induction of SERPINB2 expression by gastrin. May also play a role in the development of neuromuscular junction (400 aa)
DMPKMyotonin-protein kinase; Non-receptor serine/threonine protein kinase which is necessary for the maintenance of skeletal muscle structure and function. May play a role in myocyte differentiation and survival by regulating the integrity of the nuclear envelope and the expression of muscle-specific genes. May also phosphorylate PPP1R12A and inhibit the myosin phosphatase activity to regulate myosin phosphorylation. Also critical to the modulation of cardiac contractility and to the maintenance of proper cardiac conduction activity probably through the regulation of cellular calcium homeo [...] (639 aa)
ATP2A1Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily (1001 aa)
PLNCardiac phospholamban; Reversibly inhibits the activity of ATP2A2 in cardiac sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates the contractility of the heart muscle in response to physiological stimuli via its effects on ATP2A2. Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in the heart muscle. The degree of ATP2A2 inhibition depends on the oligomeric state of PLN. ATP2A2 inhibition is alleviated by PLN phosphorylation; Belongs to the phospholamban family (52 aa)
ATP2B4Plasma membrane calcium-transporting ATPase 4; Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell. By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily (1205 aa)
ATP2A3Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; ATPases Ca2+ transporting (1052 aa)
ATP2B2Plasma membrane calcium-transporting ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell; ATPases Ca2+ transporting (1243 aa)
ATP1A2Sodium/potassium-transporting ATPase subunit alpha-2; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1020 aa)
ATP1A4Sodium/potassium-transporting ATPase subunit alpha-4; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility; ATPase Na+/K+ transporting subunits (1029 aa)
LDLRAD1Low density lipoprotein receptor class A domain containing 1 (205 aa)
EDAEctodysplasin-A; Cytokine which is involved in epithelial-mesenchymal signaling during morphogenesis of ectodermal organs. Functions as a ligand activating the DEATH-domain containing receptors EDAR and EDA2R. May also play a role in cell adhesion (By similarity); Tumor necrosis factor superfamily (391 aa)
TMEM79Transmembrane protein 79; Contributes to the epidermal integrity and skin barrier function. Plays a role in the lamellar granule (LG) secretory system and in the stratum corneum (SC) epithelial cell formation (By similarity) (394 aa)
ATP2C2Calcium-transporting ATPase type 2C member 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium; ATPases Ca2+ transporting (975 aa)
AKAP7A-kinase anchor protein 7 isoform gamma; Probably targets cAMP-dependent protein kinase (PKA) to the cellular membrane or cytoskeletal structures. The membrane- associated form reduces epithelial sodium channel (ENaC) activity, whereas the free cytoplasmic form may negatively regulate ENaC channel feedback inhibition by intracellular sodium; A-kinase anchoring proteins (348 aa)
ATP2C1Calcium-transporting ATPase type 2C member 1; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily (973 aa)
SLNSarcolipin; Reversibly inhibits the activity of ATP2A1 in sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in muscle. Required for muscle-based, non-shivering thermogenesis (By similarity); Belongs to the sarcolipin family (31 aa)
ATP2A2Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11- induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic [...] (1042 aa)
ATP1A3Sodium/potassium-transporting ATPase subunit alpha-3; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1026 aa)
ATP1A1Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; ATPase Na+/K+ transporting subunits (1023 aa)
BCL2L13Bcl-2-like protein 13; May promote the activation of caspase-3 and apoptosis; BCL2 family (509 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]