• Version:
  • 11.0 [archived version]
STRINGSTRING
FBXW7 FBXW7 ZBTB16 ZBTB16 AKT1 AKT1 JUN JUN GATA4 GATA4 MED1 MED1 SPI1 SPI1 MAPK1 MAPK1 HHEX HHEX RARA RARA ZFPM1 ZFPM1 GATA3 GATA3 GATA2 GATA2 HDAC1 HDAC1 CREBBP CREBBP KAT2A KAT2A EP300 EP300 GATA1 GATA1 HDAC3 HDAC3 LMO2 LMO2 CBFB CBFB MNAT1 MNAT1 HDAC5 HDAC5 CDK7 CDK7 TCF12 TCF12 ZBTB32 ZBTB32
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MAPK1Mitogen-activated protein kinase 1; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (360 aa)
KAT2AHistone acetyltransferase KAT2A; Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Acetylation of histones gives a specific tag for epigenetic transcription activation. Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles. Also acetylates non- histone proteins, such as CEBPB. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat’s transactivating activity and may [...] (837 aa)
HDAC5Histone deacetylase 5; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Invo [...] (1123 aa)
SPI1Transcription factor PU.1; Binds to the PU-box, a purine-rich DNA sequence (5’- GAGGAA-3’) that can act as a lymphoid-specific enhancer. This protein is a transcriptional activator that may be specifically involved in the differentiation or activation of macrophages or B- cells. Also binds RNA and may modulate pre-mRNA splicing (By similarity); Belongs to the ETS family (271 aa)
RARARetinoic acid receptor alpha; Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5’-AGGTCA-3’ sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcript [...] (462 aa)
CDK7Cyclin-dependent kinase 7; Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription. Cyclin- dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating [...] (346 aa)
LMO2Rhombotin-2; Acts with TAL1/SCL to regulate red blood cell development. Also acts with LDB1 to maintain erythroid precursors in an immature state; LIM domain containing (227 aa)
MNAT1CDK-activating kinase assembly factor MAT1; Stabilizes the cyclin H-CDK7 complex to form a functional CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II; Nucleo [...] (309 aa)
CREBBPCREB-binding protein; Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators- NPAS2-ARNTL/BMAL1 and CLOCK- ARNTL/BMAL1 heterodimers. Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excisi [...] (2442 aa)
EP300Histone acetyltransferase p300; Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at ’Lys-122’ (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at ’Lys-27’ (H3K [...] (2414 aa)
FBXW7F-box/WD repeat-containing protein 7; Substrate recognition component of a SCF (SKP1-CUL1-F- box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter bring them to the SCF complex for ubiquitination. Identified substrates include cyclin-E (CCNE1 or CCNE2), JUN, MYC, NOTCH1 released notch intracellular domain (NICD), and probably PSEN1. Acts as a negative regulator of JNK signaling by binding to phosphorylated [...] (707 aa)
HHEXHematopoietically-expressed homeobox protein HHEX; Recognizes the DNA sequence 5’-ATTAA-3’. Transcriptional repressor. May play a role in hematopoietic differentiation. Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL (By similarity); NKL subclass homeoboxes and pseudogenes (270 aa)
MED1Mediator of RNA polymerase II transcription subunit 1; Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Acts as a coactivator for [...] (1581 aa)
HDAC3Histone deacetylase 3; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 ’Lys- 27’ (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activ [...] (428 aa)
ZFPM1Zinc finger protein ZFPM1; Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of som [...] (1006 aa)
GATA4Transcription factor GATA-4; Transcriptional activator that binds to the consensus sequence 5’-AGATAG-3’ and plays a key role in cardiac development and function. In cooperation with TBX5, it binds to cardiac super-enhancers and promotes cardiomyocyte gene expression, while it downregulates endocardial and endothelial gene expression. Involved in bone morphogenetic protein (BMP)-mediated induction of cardiac- specific gene expression. Binds to BMP response element (BMPRE) DNA sequences within cardiac activating regions (By similarity). Acts as a transcriptional activator of ANF in coop [...] (442 aa)
ZBTB16Zinc finger and BTB domain-containing protein 16; Probable transcription factor. May play a role in myeloid maturation and in the development and/or maintenance of other differentiated tissues. Probable substrate-recognition component of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins; Belongs to the krueppel C2H2-type zinc-finger protein family (673 aa)
GATA2Endothelial transcription factor GATA-2; Transcriptional activator which regulates endothelin-1 gene expression in endothelial cells. Binds to the consensus sequence 5’-AGATAG-3’; GATA zinc finger domain containing (480 aa)
JUNTranscription factor AP-1; Transcription factor that recognizes and binds to the enhancer heptamer motif 5’-TGA[CG]TCA-3’. Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation. Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells. Binds to the USP28 promoter in colorectal cancer (CRC) cells; Basic leucine zipper proteins (331 aa)
HDAC1Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST- mediated transcription in resting neurons. Upon calcium s [...] (482 aa)
GATA1Erythroid transcription factor; Transcriptional activator or repressor which probably serves as a general switch factor for erythroid development. It binds to DNA sites with the consensus sequence 5’-[AT]GATA[AG]-3’ within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS; GATA zinc finger domain containing (413 aa)
GATA3Trans-acting T-cell-specific transcription factor GATA-3; Transcriptional activator which binds to the enhancer of the T-cell receptor alpha and delta genes. Binds to the consensus sequence 5’-AGATAG-3’. Required for the T-helper 2 (Th2) differentiation process following immune and inflammatory responses; GATA zinc finger domain containing (444 aa)
ZBTB32Zinc finger and BTB domain-containing protein 32; DNA-binding protein that binds to the to a 5’- TGTACAGTGT-3’ core sequence. May function as a transcriptional transactivator and transcriptional repressor. Probably exerts its repressor effect by preventing GATA3 from binding to DNA. May play a role in regulating the differentiation and activation of helper T-cells (By similarity); BTB domain containing (487 aa)
TCF12Transcription factor 12; Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5’-CANNTG-3’); Basic helix-loop-helix proteins (706 aa)
CBFBCore-binding factor subunit beta; CBF binds to the core site, 5’-PYGPYGGT-3’, of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM- CSF promoters. CBFB enhances DNA binding by RUNX1; Belongs to the CBF-beta family (187 aa)
AKT1RAC-alpha serine/threonine-protein kinase; AKT1 is one of 3 closely related serine/threonine- protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of th [...] (480 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]