• Version:
  • 11.0 [archived version]
STRINGSTRING
PABPC3 PABPC3 LTV1 LTV1 PABPC1 PABPC1 FBLL1 FBLL1 RPS15 RPS15 RPS7 RPS7 SNRPB SNRPB RPS28 RPS28 PABPC4 PABPC4 FBL FBL NCL NCL TRMT112 TRMT112 PABPC5 PABPC5 DNAJC13 DNAJC13 PABPC1L PABPC1L HIST2H2AC HIST2H2AC PRMT7 PRMT7 THAP8 THAP8 CTCFL CTCFL HIST1H4A HIST1H4A HIST1H3A HIST1H3A PABPC1L2A PABPC1L2A PRDM1 PRDM1 PABPC1L2B PABPC1L2B DIO3 DIO3 PIK3CG PIK3CG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
FBLrRNA 2’-O-methyltransferase fibrillarin; S-adenosyl-L-methionine-dependent methyltransferase that has the ability to methylate both RNAs and proteins. Involved in pre-rRNA processing by catalyzing the site-specific 2’-hydroxyl methylation of ribose moieties in pre-ribosomal RNA. Site specificity is provided by a guide RNA that base pairs with the substrate. Methylation occurs at a characteristic distance from the sequence involved in base pairing with the guide RNA. Also acts as a protein methyltransferase by mediating methylation of ’Gln-105’ of histone H2A (H2AQ104me), a modification [...] (321 aa)
PABPC1LPolyadenylate-binding protein 1-like; poly(A) binding protein cytoplasmic 1 like; RNA binding motif containing (614 aa)
DNAJC13DnaJ homolog subfamily C member 13; Involved in membrane trafficking through early endosomes, such as the early endosome to recycling endosome transport implicated in the recycling of transferrin and the early endosome to late endosome transport implicated in degradation of EGF and EGFR. Involved in the regulation of endosomal membrane tubulation and regulates th dynamics of SNX1 on the endosomal membrane; via association with WASHC2 may link the WASH complex to the retromer SNX-BAR subcomplex; Armadillo-like helical domain containing (2243 aa)
PABPC3Polyadenylate-binding protein 3; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Binds poly(A) with a slightly lower affinity as compared to PABPC1; RNA binding motif containing (631 aa)
THAP8THAP domain containing 8 (274 aa)
PABPC5Polyadenylate-binding protein 5; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity); RNA binding motif containing (382 aa)
PABPC1Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r [...] (636 aa)
NCLNucleolin; Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5’-UUAGGG-3’ repeats more tightly than the telomeric single-stranded DNA 5’-TTAGGG-3’ repeats (710 aa)
HIST2H2ACHistone H2A type 2-C; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (129 aa)
RPS740S ribosomal protein S7; Required for rRNA maturation; Belongs to the eukaryotic ribosomal protein eS7 family (194 aa)
PRMT7Protein arginine N-methyltransferase 7; Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA. Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles. Specifically mediates the symmetric dimethylation of histone H4 ’Arg-3’ to form H4R3me2s. Plays a role in gene imprinting by being [...] (692 aa)
PIK3CGPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates [...] (1102 aa)
LTV1Protein LTV1 homolog; LTV1 ribosome biogenesis factor (475 aa)
PRDM1PR domain zinc finger protein 1; Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, [...] (825 aa)
PABPC4Polyadenylate-binding protein 4; Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity); RNA binding motif containing (660 aa)
PABPC1L2Apoly(A) binding protein cytoplasmic 1 like 2A; RNA binding motif containing (200 aa)
PABPC1L2Bpoly(A) binding protein cytoplasmic 1 like 2B; RNA binding motif containing (200 aa)
SNRPBSmall nuclear ribonucleoprotein-associated proteins B and B; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (240 aa)
CTCFLTranscriptional repressor CTCFL; Testis-specific DNA binding protein responsible for insulator function, nuclear architecture and transcriptional control, which probably acts by recruiting epigenetic chromatin modifiers. Plays a key role in gene imprinting in male germline, by participating in the establishment of differential methylation at the IGF2/H19 imprinted control region (ICR). Directly binds the unmethylated H19 ICR and recruits the PRMT7 methyltransferase, leading to methylate histone H4 ’Arg-3’ to form H4R3sme2. This probably leads to recruit de novo DNA methyltransferases a [...] (700 aa)
DIO3Thyroxine 5-deiodinase; Responsible for the deiodination of T4 (3,5,3’,5’- tetraiodothyronine) into RT3 (3,3’,5’-triiodothyronine) and of T3 (3,5,3’-triiodothyronine) into T2 (3,3’-diiodothyronine). RT3 and T2 are inactive metabolites. May play a role in preventing premature exposure of developing fetal tissues to adult levels of thyroid hormones. Can regulate circulating fetal thyroid hormone concentrations throughout gestation. Essential role for regulation of thyroid hormone inactivation during embryological development (304 aa)
TRMT112Multifunctional methyltransferase subunit TRM112-like protein; Acts as an activator of both rRNA/tRNA and protein methyltransferases. Together with methyltransferase BUD23, methylates the N(7) position of a guanine in 18S rRNA. The heterodimer with HEMK2/N6AMT1 catalyzes N5-methylation of ETF1 on ’Gln-185’, using S-adenosyl L- methionine as methyl donor. The heterodimer with ALKBH8 catalyzes the methylation of 5-carboxymethyl uridine to 5- methylcarboxymethyl uridine at the wobble position of the anticodon loop in target tRNA species. Involved in the pre-rRNA processing steps leading t [...] (125 aa)
RPS15Ribosomal protein S15 (145 aa)
RPS28Ribosomal protein S28; Belongs to the eukaryotic ribosomal protein eS28 family (69 aa)
FBLL1rRNA/tRNA 2’-O-methyltransferase fibrillarin-like protein 1; S-adenosyl-L-methionine-dependent methyltransferase that has the ability to methylate both RNAs and proteins. Involved in pre-rRNA processing by catalyzing the site-specific 2’-hydroxyl methylation of ribose moieties in pre-ribosomal RNA. Also acts as a protein methyltransferase by mediating methylation of glutamine residues (By similarity); Seven-beta-strand methyltransferase motif containing (334 aa)
HIST1H4AHistone cluster 1 H4 family member a; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (103 aa)
HIST1H3AHistone cluster 1 H3 family member a; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (136 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]