• Version:
  • 11.0 [archived version]
STRINGSTRING
RBM46 RBM46 GSTZ1 GSTZ1 FRG1 FRG1 HAO2 HAO2 RBPMS2 RBPMS2 RDH12 RDH12 ESRP1 ESRP1 RBPMS RBPMS SNRPN SNRPN SNRPB2 SNRPB2 PRPF40A PRPF40A SNRPD1 SNRPD1 SNRPD3 SNRPD3 LUC7L3 LUC7L3 SNRPA SNRPA LUC7L2 LUC7L2 SNRPD2 SNRPD2 SNRPG SNRPG SNRPE SNRPE LUC7L LUC7L CGI-74 CGI-74 MGAT5B MGAT5B SNRPF SNRPF PRPF40B PRPF40B SNRNP70 SNRNP70 PRPF39 PRPF39
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SNRPD3Small nuclear ribonucleoprotein Sm D3; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (126 aa)
GSTZ1Maleylacetoacetate isomerase; Bifunctional enzyme showing minimal glutathione- conjugating activity with ethacrynic acid and 7-chloro-4- nitrobenz-2-oxa-1,3-diazole and maleylacetoacetate isomerase activity. Has also low glutathione peroxidase activity with T- butyl and cumene hydroperoxides. Is able to catalyze the glutathione dependent oxygenation of dichloroacetic acid to glyoxylic acid; Soluble glutathione S-transferases (216 aa)
FRG1Protein FRG1; Binds to mRNA in a sequence-independent manner. May play a role in regulation of pre-mRNA splicing or in the assembly of rRNA into ribosomal subunits. May be involved in mRNA transport. May be involved in epigenetic regulation of muscle differentiation through regulation of activity of the histone-lysine N- methyltransferase KMT5B; Belongs to the FRG1 family (258 aa)
SNRPAU1 small nuclear ribonucleoprotein A; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. U1 snRNP is the first snRNP to interact with pre-mRNA. This interaction is required for the subsequent binding of U2 snRNP and the U4/U6/U5 tri-snRNP. SNRPA binds stem loop II of U1 snRNA. In a snRNP-free form (SF-A) may be involved in coupled pre-mRNA splicing and polyadenylation process. May bind preferentially to the 5’-UGCAC-3’ motif on RNAs; Belongs to the RRM U1 A/B’’ family (282 aa)
SNRPB2U2 small nuclear ribonucleoprotein B’; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein; RNA binding motif containing (225 aa)
SNRPFSmall nuclear ribonucleoprotein F; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (86 aa)
SNRPGSmall nuclear ribonucleoprotein G; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing (76 aa)
RBM46Probable RNA-binding protein 46; RNA binding motif containing (533 aa)
LUC7LPutative RNA-binding protein Luc7-like 1; May bind to RNA via its Arg/Ser-rich domain; Belongs to the Luc7 family (371 aa)
RBPMS2RNA-binding protein with multiple splicing 2; Contributes to the regulation of smooth muscle cell differentiation and proliferation in the gastrointestinal system. Binds NOG mRNA. Mediates an increase of NOG mRNA levels, and thereby contributes to the negative regulation of the BMP signaling pathway. This promotes reversible dedifferentiation of smooth muscle cells and promotes smooth muscle cell proliferation; RNA binding motif containing (209 aa)
SNRPD1Small nuclear ribonucleoprotein Sm D1; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP- snRNP interactions through nonspecific [...] (119 aa)
RBPMSRNA-binding protein with multiple splicing; Acts as a coactivator of transcriptional activity. Required to increase TGFB1/Smad-mediated transactivation. Acts through SMAD2, SMAD3 and SMAD4 to increase transcriptional activity. Increases phosphorylation of SMAD2 and SMAD3 on their C- terminal SSXS motif, possibly through recruitment of TGFBR1. Promotes the nuclear accumulation of SMAD2, SMAD3 and SMAD4 proteins. Binds to poly(A) RNA (219 aa)
SNRPD2Small nuclear ribonucleoprotein Sm D2; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (118 aa)
CGI-74Putative RNA-binding protein Luc7-like 2; May bind to RNA via its Arg/Ser-rich domain (392 aa)
PRPF39Pre-mRNA-processing factor 39; Involved in pre-mRNA splicing; Belongs to the PRP39 family (669 aa)
SNRPNSmall nuclear ribonucleoprotein-associated protein N; May be involved in tissue-specific alternative RNA processing events; Sm spliceosomal proteins (240 aa)
PRPF40APre-mRNA-processing factor 40 homolog A; Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing; Spliceosomal A complex (930 aa)
MGAT5BAlpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B; Glycosyltransferase that acts on alpha-linked mannose of N-glycans and O-mannosyl glycans. Catalyzes the transfer of N- acetylglucosamine (GlcNAc) to the beta 1-6 linkage of the mannose residue of GlcNAcbeta1,2-Manalpha on both the alpha1,3- and alpha1,6-linked mannose arms in the core structure of N-glycan. Also acts on the GlcNAcbeta1,2-Manalpha1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. Plays an active role in modulating integrin and laminin-dependent adhesion and migration of [...] (801 aa)
SNRPESmall nuclear ribonucleoprotein E; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing. May indirectly play a role in hair development (92 aa)
ESRP1Epithelial splicing regulatory protein 1; mRNA splicing factor that regulates the formation of epithelial cell-specific isoforms. Specifically regulates the expression of FGFR2-IIIb, an epithelial cell-specific isoform of FGFR2. Also regulates the splicing of CD44, CTNND1, ENAH, 3 transcripts that undergo changes in splicing during the epithelial-to-mesenchymal transition (EMT). Acts by directly binding specific sequences in mRNAs. Binds the GU-rich sequence motifs in the ISE/ISS-3, a cis-element regulatory region present in the mRNA of FGFR2; Belongs to the ESRP family (681 aa)
LUC7L3Luc7-like protein 3; Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing; Belongs to the Luc7 family (432 aa)
LUC7L2Putative RNA-binding protein Luc7-like 2; May bind to RNA via its Arg/Ser-rich domain (458 aa)
PRPF40BPre-mRNA-processing factor 40 homolog B; May be involved in pre-mRNA splicing (892 aa)
RDH12Retinol dehydrogenase 12; Exhibits an oxidoreductive catalytic activity towards retinoids. Most efficient as an NADPH-dependent retinal reductase. Displays high activity toward 9-cis and all-trans-retinol. Also involved in the metabolism of short-chain aldehydes. No steroid dehydrogenase activity detected. Might be the key enzyme in the formation of 11-cis-retinal from 11-cis-retinol during regeneration of the cone visual pigments (316 aa)
SNRNP70U1 small nuclear ribonucleoprotein 70 kDa; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5’ splice-site and the subsequent assembly of the spliceosome. SNRNP70 binds to the loop I region of U1-snRNA. The truncated isoforms cannot bind U1-snRNA; RNA binding motif containing (437 aa)
HAO2Hydroxyacid oxidase 2; Catalyzes the oxidation of L-alpha-hydroxy acids as well as, more slowly, that of L-alpha-amino acids; Belongs to the FMN-dependent alpha-hydroxy acid dehydrogenase family (351 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]