• Version:
  • 11.0 [archived version]
STRINGSTRING
YTHDC1 YTHDC1 CPSF4L CPSF4L PAPOLB PAPOLB CPSF4 CPSF4 CPSF2 CPSF2 WDR82 WDR82 CPSF1 CPSF1 NUDT21 NUDT21 ZC3H4 ZC3H4 CSTF3 CSTF3 PAPOLA PAPOLA WDR33 WDR33 PCF11 PCF11 CSTF2 CSTF2 CLP1 CLP1 CPSF3 CPSF3 YTHDC2 YTHDC2 PAPOLG PAPOLG CSTF2T CSTF2T FIP1L1 FIP1L1 SYMPK SYMPK ZC3H8 ZC3H8 P4HA2 P4HA2 SLC38A9 SLC38A9 RRAGC RRAGC LAMTOR2 LAMTOR2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
YTHDC2Probable ATP-dependent RNA helicase YTHDC2; Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs affecting the translation efficiency and mRNA abundance of its targets. Is required for proper spermatocyte development (By similarity). M6A is a modification present at internal sites of mRNAs and some non- coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability. When associated with MEIOC, binds transcripts that regulate the mitotic cell cycle inhibiting progression into metaphase, thereby allowing meiotic prophase to proceed normall [...] (1430 aa)
PAPOLAPoly(A) polymerase alpha; Polymerase that creates the 3’-poly(A) tail of mRNA’s. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus (745 aa)
CPSF3Cleavage and polyadenylation specificity factor subunit 3; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ t [...] (684 aa)
PAPOLGPoly(A) polymerase gamma; Responsible for the post-transcriptional adenylation of the 3’-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA (736 aa)
SYMPKSymplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3’-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house- keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity; Belongs to the Symplekin family (1274 aa)
ZC3H4Zinc finger CCCH domain-containing protein 4; Armadillo-like helical domain containing (1303 aa)
CPSF4Cleavage and polyadenylation specificity factor subunit 4; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
WDR82WD repeat-containing protein 82; Regulatory component of the SET1 complex implicated in the tethering of this complex to transcriptional start sites of active genes. Facilitates histone H3 ’Lys-4’ methylation via recruitment of the SETD1A or SETD1B to the ’Ser-5’ phosphorylated C-terminal domain (CTD) of RNA polymerase II large subunit (POLR2A). Component of PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase; WD repeat domain containing (313 aa)
PCF11Pre-mRNA cleavage complex 2 protein Pcf11; Component of pre-mRNA cleavage complex II (1555 aa)
CPSF2Cleavage and polyadenylation specificity factor subunit 2; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing; Belongs to the metallo-beta-lactamase superfamily. RNA-metabolizing metallo-beta-lactamase-like family. CPSF2/YSH1 subfamily (782 aa)
NUDT21Cleavage and polyadenylation specificity factor subunit 5; Component of the cleavage factor Im (CFIm) complex that plays a key role in pre-mRNA 3’-processing. Involved in association with CPSF6 or CPSF7 in pre-MRNA 3’-end poly(A) site cleavage and poly(A) addition. NUDT21/CPSF5 binds to cleavage and polyadenylation RNA substrates. The homodimer mediates simultaneous sequence-specific recognition of two 5’-UGUA-3’ elements within the pre-mRNA. Binds to, but does not hydrolyze mono- and di-adenosine nucleotides. May have a role in mRNA export; Nudix hydrolase family (227 aa)
CSTF3Cleavage stimulation factor subunit 3; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
WDR33pre-mRNA 3’ end processing protein WDR33; Essential for both cleavage and polyadenylation of pre- mRNA 3’ ends; WD repeat domain containing (1336 aa)
CSTF2TCleavage stimulation factor subunit 2 tau variant; May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity); Cleavage stimulation factor subunits (616 aa)
FIP1L1Pre-mRNA 3’-end-processing factor FIP1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex (594 aa)
YTHDC1YTH domain-containing protein 1; Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs. M6A is a modification present at internal sites of mRNAs and some non- coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability. Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10. Specifically binds m6A- containing mRNAs and promotes recruitment of SRSF3 to its mRNA- binding elements adjacent to m6A sites, leadin [...] (727 aa)
CPSF4LPutative cleavage and polyadenylation specificity factor subunit 4-like protein; Cleavage and polyadenylation specific factor 4 like; Belongs to the CPSF4/YTH1 family (179 aa)
LAMTOR2Ragulator complex protein LAMTOR2; As part of the Ragulator complex it is involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator functions as a guanine nucleotide exchange factor activating the small GTPases Rag. Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. Adapter protein that enhances the efficiency of the MAP ki [...] (125 aa)
CSTF2Cleavage stimulation factor subunit 2; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
RRAGCRas-related GTP-binding protein C; Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids (399 aa)
SLC38A9Sodium-coupled neutral amino acid transporter 9; Lysosomal amino acid transporter involved in the activation of mTORC1 in response to amino acids. Probably acts as an amino acid sensor of the Rag GTPases and Ragulator complexes, 2 complexes involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Following activation by amino acids, the Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. SLC38A9 mediates transport of amino a [...] (561 aa)
PAPOLBpoly(A) polymerase beta (637 aa)
P4HA2Prolyl 4-hydroxylase subunit alpha-2; Catalyzes the post-translational formation of 4- hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins (535 aa)
ZC3H8Zinc finger CCCH domain-containing protein 8; Acts as a transcriptional repressor of the GATA3 promoter. Sequence-specific DNA-binding factor that binds to the 5’-AGGTCTC-3’ sequence within the negative cis-acting element intronic regulatory region (IRR) of the GATA3 gene (By similarity). Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. Induces thymocyte apoptosis when overexpressed, which may indicate a role in regulation of thymocyte homeostasis; Zinc fingers CCCH-type (291 aa)
CLP1Polyribonucleotide 5’-hydroxyl-kinase Clp1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex- phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicing; this ph [...] (425 aa)
CPSF1Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]