• Version:
  • 11.0 [archived version]
STRINGSTRING
HNRNPL HNRNPL RBM22 RBM22 SF3B6 SF3B6 POLR2C POLR2C PQBP1 PQBP1 SF3A2 SF3A2 GPKOW GPKOW PHF5A PHF5A PRPF19 PRPF19 CSTF3 CSTF3 POLR2I POLR2I AQR AQR SNRPD3 SNRPD3 PCF11 PCF11 CPSF1 CPSF1 CPSF2 CPSF2 SF3A1 SF3A1 WDR33 WDR33 SKIV2L2 SKIV2L2 CPSF3 CPSF3 CPSF4 CPSF4 FIP1L1 FIP1L1 NUP155 NUP155 NUP107 NUP107 AAAS AAAS SLC38A9 SLC38A9
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GPKOWG-patch domain and KOW motifs (476 aa)
AQRIntron-binding protein aquarius; Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis. Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly. May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing; Belongs to the CWF11 family (1485 aa)
RBM22Pre-mRNA-splicing factor RBM22; Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5’ splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses; Belongs to the SLT11 family (420 aa)
AAASAladin; Plays a role in the normal development of the peripheral and central nervous system; Nucleoporins (546 aa)
SF3A1Splicing factor 3A subunit 1; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; U2 small nucleolar ribonucleoprotein (793 aa)
SNRPD3Small nuclear ribonucleoprotein Sm D3; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (126 aa)
PHF5APHD finger-like domain-containing protein 5A; Involved with the PAF1 complex (PAF1C) in transcriptional elongation by RNA polymerase II, and in regulation of development and maintenance of embryonic stem cell (ESC) pluripotency. Required for maintenance of ESCs self-renewal and cellular reprogramming of stem cells. Maintains pluripotency by recruiting and stabilizing PAF1C on pluripotency genes loci, and by regulating the expression of the pluripotency genes. Regulates the deposition of elongation-associated histone modifications, including dimethylated histone H3 ’Lys-79’ (H3K79me2) a [...] (110 aa)
PQBP1Polyglutamine-binding protein 1; Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development. Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species. May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery. May be involved in ATXN1 mutant-in [...] (265 aa)
POLR2CDNA-directed RNA polymerase II subunit RPB3; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity) (275 aa)
HNRNPLHeterogeneous nuclear ribonucleoprotein L; Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements. Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter; RNA binding motif containing (589 aa)
SF3A2Splicing factor 3A subunit 2; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; Belongs to the SF3A2 family (464 aa)
POLR2IDNA-directed RNA polymerase II subunit RPB9; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity) (125 aa)
PRPF19Pre-mRNA-processing factor 19; Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates ’Lys-63’-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex. Recruite [...] (504 aa)
NUP107Nuclear pore complex protein Nup107; Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. Required for the assembly of peripheral proteins into the NPC. May anchor NUP62 to the NPC; Belongs to the nucleoporin Nup84/Nup107 family (925 aa)
SKIV2L2Superkiller viralicidic activity 2-like 2; Component of exosome targeting complexes. Subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that directs a subset of non-coding short-lived RNAs for exosomal degradation. Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor SKIV2L2/MTR4, which links to RNA-binding protein ada [...] (1042 aa)
NUP155Nuclear pore complex protein Nup155; Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport (1391 aa)
SF3B6Splicing factor 3B subunit 6; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch si [...] (125 aa)
CPSF3Cleavage and polyadenylation specificity factor subunit 3; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ t [...] (684 aa)
CPSF4Cleavage and polyadenylation specificity factor subunit 4; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
PCF11Pre-mRNA cleavage complex 2 protein Pcf11; Component of pre-mRNA cleavage complex II (1555 aa)
CPSF2Cleavage and polyadenylation specificity factor subunit 2; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing; Belongs to the metallo-beta-lactamase superfamily. RNA-metabolizing metallo-beta-lactamase-like family. CPSF2/YSH1 subfamily (782 aa)
CSTF3Cleavage stimulation factor subunit 3; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
WDR33pre-mRNA 3’ end processing protein WDR33; Essential for both cleavage and polyadenylation of pre- mRNA 3’ ends; WD repeat domain containing (1336 aa)
FIP1L1Pre-mRNA 3’-end-processing factor FIP1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex (594 aa)
SLC38A9Sodium-coupled neutral amino acid transporter 9; Lysosomal amino acid transporter involved in the activation of mTORC1 in response to amino acids. Probably acts as an amino acid sensor of the Rag GTPases and Ragulator complexes, 2 complexes involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids. Following activation by amino acids, the Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated. SLC38A9 mediates transport of amino a [...] (561 aa)
CPSF1Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]