• Version:
  • 11.0 [archived version]
STRINGSTRING
RAB3IL1 RAB3IL1 TTC7B TTC7B FAM126B FAM126B RGS20 RGS20 EFR3A EFR3A FAM126A FAM126A PI4KA PI4KA EFR3B EFR3B PSMC1 PSMC1 PI4KB PI4KB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
EFR3AProtein EFR3 homolog A; Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3A probably acts as the membrane-anchoring component. Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect (821 aa)
PI4KAPhosphatidylinositol 4-kinase alpha; Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol- 1,4,5,-trisphosphate; Belongs to the PI3/PI4-kinase family. Type III PI4K subfamily (2102 aa)
PSMC126S proteasome regulatory subunit 4; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with [...] (440 aa)
RGS20Regulator of G-protein signaling 20; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds selectively to G(z)-alpha and G(alpha)-i2 subunits, accelerates their GTPase activity and regulates their signaling activities. The G(z)-alpha activity is inhibited by the phosphorylation and palmitoylation of the G- protein. Negatively regulates mu-opioid receptor-mediated activation of the G-proteins (By similarity) (388 aa)
TTC7BTetratricopeptide repeat protein 7B; Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and FAM126A, via direct interactions (843 aa)
PI4KBPhosphatidylinositol 4-kinase beta; Phosphorylates phosphatidylinositol (PI) in the first committed step in the production of the second messenger inositol- 1,4,5,-trisphosphate (PIP). May regulate Golgi disintegration/reorganization during mitosis, possibly via its phosphorylation. Involved in Golgi-to-plasma membrane trafficking (By similarity); Belongs to the PI3/PI4-kinase family. Type III PI4K subfamily (828 aa)
RAB3IL1Guanine nucleotide exchange factor for Rab-3A; Guanine nucleotide exchange factor (GEF) which may activate RAB3A, a GTPase that regulates synaptic vesicle exocytosis. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May also activate RAB8A and RAB8B; Belongs to the SEC2 family (382 aa)
EFR3BProtein EFR3 homolog B; Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3B probably acts as the membrane-anchoring component. Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect; Armadillo-like helical domain containing (817 aa)
FAM126BProtein FAM126B; Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane; Belongs to the FAM126 family (530 aa)
FAM126AHyccin; Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. FAM126A plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P. Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system. May also have a role in the beta-catenin/Lef signaling pathway (Probable) (521 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]