• Version:
  • 11.0 [archived version]
STRINGSTRING
KDM5B KDM5B JARID2 JARID2 MTMR9 MTMR9 BLK BLK KDM6B KDM6B RNASET2 RNASET2 KDM6A KDM6A NELL2 NELL2 ATP5E ATP5E ATP5C1 ATP5C1 ATP5F1 ATP5F1 KDM5A KDM5A ATP5D ATP5D UQCRFS1 UQCRFS1 ATP5A1 ATP5A1 KDM5C KDM5C GAA GAA ATP5EP2 ATP5EP2 ATP5B ATP5B ATPIF1 ATPIF1 MED23 MED23 MED4 MED4 MED20 MED20 CAT CAT UNK UNK GPR35 GPR35
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ATP5DATP synthase subunit delta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (168 aa)
MTMR9Myotubularin-related protein 9; Probable pseudophosphatase. Contains a Gly residue instead of a conserved Cys residue in the dsPTPase catalytic loop which renders it catalytically inactive as a phosphatase (Potential); Belongs to the protein-tyrosine phosphatase family. Non-receptor class myotubularin subfamily (549 aa)
CATCatalase; Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide. Promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells; Belongs to the catalase family (527 aa)
ATP5EATP synthase subunit epsilon, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of th [...] (51 aa)
KDM6BLysine-specific demethylase 6B; Histone demethylase that specifically demethylates ’Lys- 27’ of histone H3, thereby playing a central role in histone code. Demethylates trimethylated and dimethylated H3 ’Lys-27’. Plays a central role in regulation of posterior development, by regulating HOX gene expression. Involved in inflammatory response by participating in macrophage differentiation in case of inflammation by regulating gene expression and macrophage differentiation. Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expressi [...] (1682 aa)
MED4Mediator of RNA polymerase II transcription subunit 4; Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (270 aa)
BLKTyrosine-protein kinase Blk; Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling. B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis d [...] (505 aa)
ATP5BATP synthase subunit beta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (529 aa)
MED20Mediator of RNA polymerase II transcription subunit 20; Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (212 aa)
GAALysosomal alpha-glucosidase; Essential for the degradation of glycogen in lysosomes. Has highest activity on alpha-1,4-linked glycosidic linkages, but can also hydrolyze alpha-1,6-linked glucans (952 aa)
UQCRFS1Cytochrome b-c1 complex subunit Rieske, mitochondrial; Cytochrome b-c1 complex subunit Rieske, mitochondrial- Component of the mitochondrial ubiquinol-cytochrome c reductase complex dimer (complex III dimer), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. Incorporation of UQCRFS1 is the penultimate step in complex III assembly (By similarity) (274 aa)
ATPIF1ATPase inhibitor, mitochondrial; Endogenous F(1)F(o)-ATPase inhibitor limiting ATP depletion when the mitochondrial membrane potential falls below a threshold and the F(1)F(o)-ATP synthase starts hydrolyzing ATP to pump protons out of the mitochondrial matrix. Required to avoid the consumption of cellular ATP when the F(1)F(o)-ATP synthase enzyme acts as an ATP hydrolase. Indirectly acts as a regulator of heme synthesis in erythroid tissues- regulates heme synthesis by modulating the mitochondrial pH and redox potential, allowing FECH to efficiently catalyze the incorporation of iron i [...] (106 aa)
JARID2Protein Jumonji; Regulator of histone methyltransferase complexes that plays an essential role in embryonic development, including heart and liver development, neural tube fusion process and hematopoiesis. Acts by modulating histone methyltransferase activity and promoting the recruitment of histone methyltransferase complexes to their target genes. Binds DNA and mediates the recruitment of the PRC2 complex to target genes in embryonic stem cells. Does not have histone demethylase activity but regulates activity of various histone methyltransferase complexes. In embryonic stem cells, i [...] (1246 aa)
ATP5C1ATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa)
KDM5BLysine-specific demethylase 5B; Histone demethylase that demethylates ’Lys-4’ of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 ’Lys-9’ or H3 ’Lys-27’. Demethylates trimethylated, dimethylated and monomethylated H3 ’Lys-4’. Acts as a transcriptional corepressor for FOXG1B and PAX9. Favors the proliferation of breast cancer cells by repressing tumor suppressor genes such as BRCA1 and HOXA5. In contrast, may act as a tumor suppressor for melanoma. Represses the CLOCK-ARNTL/BMAL1 heterodimer-mediated transcriptional activation of the core clock [...] (1544 aa)
MED23Mediator of RNA polymerase II transcription subunit 23; Required for transcriptional activation subsequent to the assembly of the pre-initiation complex (By similarity). Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functi [...] (1368 aa)
ATP5F1ATP synthase F(0) complex subunit B1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechani [...] (256 aa)
KDM5CLysine-specific demethylase 5C; Histone demethylase that specifically demethylates ’Lys- 4’ of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 ’Lys-9’, H3 ’Lys-27’, H3 ’Lys-36’, H3 ’Lys-79’ or H4 ’Lys-20’. Demethylates trimethylated and dimethylated but not monomethylated H3 ’Lys-4’. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-ARNTL/BMAL1 heterodimer- mediated transcriptional activation of the core clock component PER2 (By [...] (1560 aa)
KDM6ALysine-specific demethylase 6A; Histone demethylase that specifically demethylates ’Lys- 27’ of histone H3, thereby playing a central role in histone code. Demethylates trimethylated and dimethylated but not monomethylated H3 ’Lys-27’. Plays a central role in regulation of posterior development, by regulating HOX gene expression. Demethylation of ’Lys-27’ of histone H3 is concomitant with methylation of ’Lys-4’ of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A. Plays a demethylase-independent role in chromatin remodeling to regulate [...] (1401 aa)
ATP5EP2ATP synthase subunit epsilon-like protein, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary me [...] (51 aa)
ATP5A1ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (553 aa)
KDM5ALysine-specific demethylase 5A; Histone demethylase that specifically demethylates ’Lys- 4’ of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 ’Lys-9’, H3 ’Lys-27’, H3 ’Lys-36’, H3 ’Lys-79’ or H4 ’Lys-20’. Demethylates trimethylated and dimethylated but not monomethylated H3 ’Lys-4’. Regulates specific gene transcription through DNA-binding on 5’-CCGCCC-3’ motif. May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation. May participate in transcriptional repr [...] (1690 aa)
GPR35G-protein coupled receptor 35; Acts as a receptor for kynurenic acid, an intermediate in the tryptophan metabolic pathway. The activity of this receptor is mediated by G-proteins that elicit calcium mobilization and inositol phosphate production through G(qi/o) proteins (340 aa)
NELL2Protein kinase C-binding protein NELL2; Required for neuron survival through the modulation of MAPK pathways (By similarity). Involved in the regulation of hypothalamic GNRH secretion and the control of puberty (By similarity) (866 aa)
RNASET2Ribonuclease T2; Has ribonuclease activity, with higher activity at acidic pH. Probably is involved in lysosomal degradation of ribosomal RNA (By similarity). Probably plays a role in cellular RNA catabolism; Belongs to the RNase T2 family (256 aa)
UNKRING finger protein unkempt homolog; Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes; Zinc fingers CCCH-type (810 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]