• Version:
  • 11.0 [archived version]
STRINGSTRING
ADRBK2 ADRBK2 GLP1R GLP1R ADRBK1 ADRBK1 CALCR CALCR ADRB2 ADRB2 GCG GCG RHO RHO GNB4 GNB4 GNB2 GNB2 GNG2 GNG2 GNB3 GNB3 OPRM1 OPRM1 GNA11 GNA11 GNB5 GNB5 GNB1 GNB1 GNAS GNAS GNAQ GNAQ GNAI2 GNAI2 HTR1B HTR1B GNAI3 GNAI3 ADORA2A ADORA2A GNAI1 GNAI1 GNAL GNAL ADORA1 ADORA1 GNAO1 GNAO1 ENSG00000258555 ENSG00000258555
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GNA11Guanine nucleotide-binding protein subunit alpha-11; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Acts as an activator of phospholipase C; G protein subunits alpha, group q (359 aa)
GNB3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNB4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNB5Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...] (395 aa)
GNAO1Guanine nucleotide-binding protein G(o) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated by RGS14; Belongs to the G-alpha family. G(i/o/t/z) subfamily (354 aa)
GNAQGuanine nucleotide-binding protein G(q) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity. Regulates chemotaxis of BM-derived neutrophils and dendritic cells (in vitro) (By similarity); Belongs to the G-alpha family. G(q) subfamily (359 aa)
RHORhodopsin; Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal; Belongs to the G-protein coupled receptor 1 family. Opsin subfamily (348 aa)
GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
ADRB2Beta-2 adrenergic receptor; Beta-adrenergic receptors mediate the catecholamine- induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine; Belongs to the G-protein coupled receptor 1 family. Adrenergic receptor subfamily. ADRB2 sub-subfamily (413 aa)
ADRBK1Beta-adrenergic receptor kinase 1; Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them. Key regulator of LPAR1 signaling. Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor. Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner; Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. GPRK subfamily (689 aa)
GNAI2Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase- they inhibit the cyclase in response to beta-adrenergic stimuli. May play a role in cell division (355 aa)
ADRBK2Beta-adrenergic receptor kinase 2; Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors (688 aa)
GNALGuanine nucleotide-binding protein G(olf) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. G(olf) alpha mediates signal transduction within the olfactory neuroepithelium and the basal ganglia. May be involved in some aspect of visual transduction, and in mediating the effect of one or more hormones/neurotransmitters (458 aa)
GNG2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (By similarity) (71 aa)
ADORA2AAdenosine A2a receptor; Receptor for adenosine. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family (412 aa)
GNAI1Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa)
CALCRCalcitonin receptor; This is a receptor for calcitonin. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase. The calcitonin receptor is thought to couple to the heterotrimeric guanosine triphosphate-binding protein that is sensitive to cholera toxin (508 aa)
ADORA1Adenosine receptor A1; Receptor for adenosine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family (326 aa)
GNAI3Guanine nucleotide-binding protein G(k) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa)
HTR1B5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] (390 aa)
GNASGuanine nucleotide-binding protein G(s) subunit alpha isoforms XLas; Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as GNAS isoforms (By similarity) (1037 aa)
GLP1RGlucagon-like peptide 1 receptor; G-protein coupled receptor for glucagon-like peptide 1 (GLP-1). Ligand binding triggers activation of a signaling cascade that leads to the activation of adenylyl cyclase and increased intracellular cAMP levels. Plays a role in regulating insulin secretion in response to GLP-1 (By similarity) (463 aa)
GCGGlucagon; Glicentin may modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life; Belongs to the glucagon family (180 aa)
OPRM1Mu-type opioid receptor; Receptor for endogenous opioids such as beta-endorphin and endomorphin. Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone. Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors. The agonist- and cell typ [...] (493 aa)
ENSG00000258555Adenosine receptor A2a; Receptor for adenosine. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family (412 aa)
GNB1Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]