• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP6V1A ATP6V1A YWHAE YWHAE DCTN2 DCTN2 SCLY SCLY CAB39 CAB39 NAPRT NAPRT NLRP13 NLRP13 OXSM OXSM TMOD2 TMOD2 HSPE1 HSPE1 SHMT2 SHMT2 GORASP2 GORASP2 BABAM1 BABAM1 FAM175B FAM175B EZR EZR SHMT1 SHMT1 BRE BRE BRCC3 BRCC3 RHOA RHOA PRRC1 PRRC1 MAPK12 MAPK12 CSNK2B CSNK2B PAFAH1B2 PAFAH1B2 DDX1 DDX1 EIF4EBP1 EIF4EBP1 PPP1R8 PPP1R8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MAPK12Mitogen-activated protein kinase 12; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK12 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstre [...] (367 aa)
HSPE110 kDa heat shock protein, mitochondrial; Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per [...] (102 aa)
GORASP2Golgi reassembly-stacking protein 2; Plays a role in the assembly and membrane stacking of the Golgi cisternae, and in the process by which Golgi stacks reform after mitotic breakdown. May regulate the intracellular transport and presentation of a defined set of transmembrane proteins, such as transmembrane TGFA; Belongs to the GORASP family (452 aa)
TMOD2Tropomodulin-2; Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton (By similarity); Tropomodulins (351 aa)
SCLYSelenocysteine lyase; Catalyzes the decomposition of L-selenocysteine to L- alanine and elemental selenium; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family (453 aa)
CAB39Calcium-binding protein 39; Component of a complex that binds and activates STK11/LKB1. In the complex, required to stabilize the interaction between CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta) and STK11/LKB1 (341 aa)
YWHAE14-3-3 protein epsilon; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner (By similarity). Positively regulates phosphorylated protein HSF1 nuclear export to the cytoplasm; Belongs to the 14-3-3 family (255 aa)
ATP6V1AV-type proton ATPase catalytic subunit A; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase. V-ATPase vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation; Belongs to the ATPase alpha/beta chains family (617 aa)
OXSM3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; May play a role in the biosynthesis of lipoic acid as well as longer chain fatty acids required for optimal mitochondrial function; Belongs to the beta-ketoacyl-ACP synthases family (459 aa)
FAM175BBRISC complex subunit Abraxas 2; Component of the BRISC complex, a multiprotein complex that specifically cleaves ’Lys-63’-linked polyubiquitin, leaving the last ubiquitin chain attached to its substrates. May act as a central scaffold protein that assembles the various components of the BRISC complex and retains them in the cytoplasm. Plays a role in regulating the onset of apoptosis via its role in modulating ’Lys- 63’-linked ubiquitination of target proteins (By similarity). Required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubi [...] (415 aa)
PPP1R8Nuclear inhibitor of protein phosphatase 1; Inhibitor subunit of the major nuclear protein phosphatase-1 (PP-1). It has RNA-binding activity but does not cleave RNA and may target PP-1 to RNA-associated substrates. May also be involved in pre-mRNA splicing. Binds DNA and might act as a transcriptional repressor. Seems to be required for cell proliferation (351 aa)
SHMT1Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine (483 aa)
SHMT2Serine hydroxymethyltransferase, mitochondrial; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism. Thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA. Plays a role in the deubiquitination of target proteins as component of the BRISC complex. Required for IFNAR1 deubiquitination by the BRISC complex; Belongs to the SHMT family (504 aa)
EIF4EBP1Eukaryotic translation initiation factor 4E-binding protein 1; Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex- hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways (118 aa)
BREBRISC and BRCA1-A complex member 2; Component of the BRCA1-A complex, a complex that specifically recognizes ’Lys-63’-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes ’Lys-63’-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it acts as an adapter that bridges the interaction between BABAM1/NBA1 and the rest of the complex, thereby being required for the complex integrit [...] (415 aa)
NLRP13NACHT, LRR and PYD domains-containing protein 13; Involved in inflammation; NLR family (1043 aa)
BABAM1BRISC and BRCA1-A complex member 1; Component of the BRCA1-A complex, a complex that specifically recognizes ’Lys-63’-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes ’Lys-63’-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cle [...] (329 aa)
EZREzrin; Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis; A-kinase anchoring proteins (586 aa)
BRCC3Lys-63-specific deubiquitinase BRCC36; Metalloprotease that specifically cleaves ’Lys-63’- linked polyubiquitin chains. Does not have activity toward ’Lys-48’-linked polyubiquitin chains. Component of the BRCA1-A complex, a complex that specifically recognizes ’Lys-63’-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). In the BRCA1-A complex, it specifically removes ’Lys-63’-linked ubiquitin on histones H2A and H2AX, antagonizing the RNF8-dependent ubiquitination at double [...] (316 aa)
CSNK2BCasein kinase II subunit beta; Participates in Wnt signaling (By similarity). Plays a complex role in regulating the basal catalytic activity of the alpha subunit; Belongs to the casein kinase 2 subunit beta family (215 aa)
DDX1ATP-dependent RNA helicase DDX1; Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5’ single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expressi [...] (740 aa)
RHOATransforming protein RhoA; Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated r [...] (193 aa)
NAPRTNicotinate phosphoribosyltransferase; Catalyzes the conversion of nicotinic acid (NA) to NA mononucleotide (NaMN). Essential for NA to increase cellular NAD levels and prevent oxidative stress of the cells; Belongs to the NAPRTase family (538 aa)
DCTN2Dynactin subunit 2; Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development; Dynactin (406 aa)
PRRC1Protein PRRC1; Proline rich coiled-coil 1; Belongs to the PRRC1 family (462 aa)
PAFAH1B2Platelet-activating factor acetylhydrolase IB subunit beta; Inactivates PAF by removing the acetyl group at the sn-2 position. This is a catalytic subunit (229 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]