• Version:
  • 11.0 [archived version]
STRINGSTRING
NIT1 NIT1 ALDH5A1 ALDH5A1 KLHDC3 KLHDC3 APPL1 APPL1 ARFGAP2 ARFGAP2 MMP14 MMP14 ARFGAP3 ARFGAP3 PROSC PROSC ADI1 ADI1 ENOPH1 ENOPH1 DBT DBT LZTR1 LZTR1 MRI1 MRI1 GBE1 GBE1 ECHS1 ECHS1 IL4I1 IL4I1 TAT TAT ALDOA ALDOA PGK1 PGK1 GNB5 GNB5 GALE GALE ALDOC ALDOC GNPDA2 GNPDA2 GNB4 GNB4 GNB3 GNB3 GNB2 GNB2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MRI1Methylthioribose-1-phosphate isomerase; Catalyzes the interconversion of methylthioribose-1- phosphate (MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1- P). Independently from catalytic activity, promotes cell invasion in response to constitutive RhoA activation by promoting FAK tyrosine phosphorylation and stress fiber turnover (369 aa)
LZTR1Leucine-zipper-like transcriptional regulator 1; Probable transcriptional regulator that may play a crucial role in embryogenesis; BTB domain containing (840 aa)
ALDOCAldolase, fructose-bisphosphate C (364 aa)
GNB3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNB4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
GNB5Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...] (395 aa)
ARFGAP3ADP-ribosylation factor GTPase-activating protein 3; GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes; ArfGAPs (516 aa)
ENOPH1Enolase-phosphatase E1; Bifunctional enzyme that catalyzes the enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK-MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK- MTPene); HAD Asp-based non-protein phosphatases (261 aa)
APPL1DCC-interacting protein 13-alpha; Adapter protein that interacts with proteins involved in different cellular signaling pathways. Required for the regulation of cell proliferation in response to extracellular signals from an early endosomal compartment. Links Rab5 to nuclear signal transduction. Involved in the regulation of the insulin receptor signaling pathway; BAR-PH domain containing (709 aa)
GNPDA2Glucosamine-6-phosphate deaminase 2 (276 aa)
GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (340 aa)
MMP14Matrix metalloproteinase-14; Endopeptidase that degrades various components of the extracellular matrix such as collagen. Activates progelatinase A. Essential for pericellular collagenolysis and modeling of skeletal and extraskeletal connective tissues during development (By similarity). May be involved in actin cytoskeleton reorganization by cleaving PTK7. Acts as a positive regulator of cell growth and migration via activation of MMP15. Involved in the formation of the fibrovascular tissues in association with pro-MMP2. Cleaves ADGRB1 to release vasculostatin-40 which inhibits angiog [...] (582 aa)
KLHDC3Kelch domain-containing protein 3; May be involved in meiotic recombination process (382 aa)
ALDH5A1Succinate-semialdehyde dehydrogenase, mitochondrial; Catalyzes one step in the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA); Aldehyde dehydrogenases (548 aa)
PROSCPyridoxal phosphate homeostasis protein; Pyridoxal 5’-phosphate (PLP)-binding protein, which may be involved in intracellular homeostatic regulation of pyridoxal 5’-phosphate (PLP), the active form of vitamin B6 (275 aa)
ADI11,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase; Catalyzes the formation of formate and 2-keto-4- methylthiobutyrate (KMTB) from 1,2-dihydroxy-3-keto-5- methylthiopentene (DHK-MTPene). Also down-regulates cell migration mediated by MMP14. Necessary for hepatitis C virus replication in an otherwise non-permissive cell line (179 aa)
TATTyrosine aminotransferase; Transaminase involved in tyrosine breakdown. Converts tyrosine to p-hydroxyphenylpyruvate. Can catalyze the reverse reaction, using glutamic acid, with 2-oxoglutarate as cosubstrate (in vitro). Has much lower affinity and transaminase activity towards phenylalanine (454 aa)
NIT1Deaminated glutathione amidase; Catalyzes the hydrolysis of the amide bond in N-(4- oxoglutarate)-L-cysteinylglycine (deaminated glutathione), a metabolite repair reaction to dispose of the harmful deaminated glutathione. Plays a role in cell growth and apoptosis- loss of expression promotes cell growth, resistance to DNA damage stress and increased incidence to NMBA-induced tumors. Has tumor suppressor properties that enhances the apoptotic responsiveness in cancer cells; this effect is additive to the tumor suppressor activity of FHIT. It is also a negative regulator of primary T- cells (327 aa)
ECHS1Enoyl-CoA hydratase, mitochondrial; Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate. Has high substrate specificity for crotonyl-CoA and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA and methacrylyl-CoA. It is noteworthy that binds tiglyl-CoA, but hydrates only a small amount of this substrate (290 aa)
DBTDihydrolipoamide branched chain transacylase E2; The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components- branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). Within this complex, the catalytic function of this enzyme is to accept, and to transfer to coenzyme A, acyl groups that are generated by the branched-chain alpha-keto acid decarboxylase component (482 aa)
PGK1Phosphoglycerate kinase 1; In addition to its role as a glycolytic enzyme, it seems that PGK-1 acts as a polymerase alpha cofactor protein (primer recognition protein). May play a role in sperm motility (417 aa)
ALDOAFructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity); Belongs to the class I fructose-bisphosphate aldolase family (418 aa)
GBE11,4-alpha-glucan-branching enzyme; Required for normal glycogen accumulation. The alpha 1-6 branches of glycogen play an important role in increasing the solubility of the molecule (Probable); Belongs to the glycosyl hydrolase 13 family. GlgB subfamily (702 aa)
ARFGAP2ADP-ribosylation factor GTPase-activating protein 2; GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes; ArfGAPs (521 aa)
IL4I1L-amino-acid oxidase; Lysosomal L-amino-acid oxidase with highest specific activity with phenylalanine. May play a role in lysosomal antigen processing and presentation (By similarity); Belongs to the flavin monoamine oxidase family. FIG1 subfamily (589 aa)
GALEUDP-glucose 4-epimerase; Catalyzes two distinct but analogous reactions- the reversible epimerization of UDP-glucose to UDP-galactose and the reversible epimerization of UDP-N-acetylglucosamine to UDP-N- acetylgalactosamine. The reaction with UDP-Gal plays a critical role in the Leloir pathway of galactose catabolism in which galactose is converted to the glycolytic intermediate glucose 6- phosphate. It contributes to the catabolism of dietary galactose and enables the endogenous biosynthesis of both UDP-Gal and UDP- GalNAc when exogenous sources are limited. Both UDP-sugar interconver [...] (348 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]