• Version:
  • 11.0 [archived version]
STRINGSTRING
MSI2 MSI2 LEPRE1 LEPRE1 MSI1 MSI1 GTF3C3 GTF3C3 CRTAP CRTAP XPO1 XPO1 CPEB1 CPEB1 CSTF3 CSTF3 CLP1 CLP1 CSTF1 CSTF1 CPSF1 CPSF1 PCF11 PCF11 CSTF2T CSTF2T SYMPK SYMPK CSTF2 CSTF2 CPSF3 CPSF3 CPSF2 CPSF2 CPSF4 CPSF4 PABPN1 PABPN1 RNPS1 RNPS1 RBBP6 RBBP6 PAPOLA PAPOLA FIP1L1 FIP1L1 PABPN1L PABPN1L ENSG00000258643 ENSG00000258643 RBM25 RBM25
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PAPOLAPoly(A) polymerase alpha; Polymerase that creates the 3’-poly(A) tail of mRNA’s. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus (745 aa)
PABPN1Polyadenylate-binding protein 2; Involved in the 3’-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product (By similarity). Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and controls also the poly(A) tail length (By similarity). Increases the affinity of poly(A) polymerase for RNA (By similarity). Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense- mediated decay (NMD) of mRNA. Cooperates with SKIP to syner [...] (306 aa)
CSTF1Cleavage stimulation factor subunit 1; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. May be responsible for the interaction of CSTF with other factors to form a stable complex on the pre-mRNA (431 aa)
LEPRE1Prolyl 3-hydroxylase 1; Basement membrane-associated chondroitin sulfate proteoglycan (CSPG). Has prolyl 3-hydroxylase activity catalyzing the post-translational formation of 3-hydroxyproline in -Xaa-Pro- Gly- sequences in collagens, especially types IV and V. May be involved in the secretory pathway of cells. Has growth suppressive activity in fibroblasts (804 aa)
CPSF3Cleavage and polyadenylation specificity factor subunit 3; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3’-end-processing endonuclease. Also involved in the histone 3’-end pre-mRNA processing. U7 snRNP- dependent protein that induces both the 3’-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5’ t [...] (684 aa)
SYMPKSymplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3’-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house- keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity; Belongs to the Symplekin family (1274 aa)
MSI1RNA-binding protein Musashi homolog 1; RNA binding protein that regulates the expression of target mRNAs at the translation level. Regulates expression of the NOTCH1 antagonist NUMB. Binds RNA containing the sequence 5’- GUUAGUUAGUUAGUU-3’ and other sequences containing the pattern 5’- [GA]U(1-3)AGU-3’. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity) (362 aa)
RBM25RNA-binding protein 25; RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5’-splice site (5’-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5’-ss usage through the 5’-CGGGCA-3’ RNA sequence. Its association with LUC7 [...] (843 aa)
GTF3C3General transcription factor 3C polypeptide 3; Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters; General transcription factors (886 aa)
MSI2RNA-binding protein Musashi homolog 2; RNA binding protein that regulates the expression of target mRNAs at the translation level. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity); Belongs to the Musashi family (328 aa)
CPSF4Cleavage and polyadenylation specificity factor subunit 4; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U) (269 aa)
PCF11Pre-mRNA cleavage complex 2 protein Pcf11; Component of pre-mRNA cleavage complex II (1555 aa)
CPSF2Cleavage and polyadenylation specificity factor subunit 2; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3’ end pre-mRNA processing; Belongs to the metallo-beta-lactamase superfamily. RNA-metabolizing metallo-beta-lactamase-like family. CPSF2/YSH1 subfamily (782 aa)
CSTF3Cleavage stimulation factor subunit 3; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs (717 aa)
RBBP6E3 ubiquitin-protein ligase RBBP6; E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome. May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10- dependent manner. Controls ZBTB38 protein stability [...] (1792 aa)
CRTAPCartilage-associated protein; Necessary for efficient 3-hydroxylation of fibrillar collagen prolyl residues; Belongs to the leprecan family (401 aa)
CSTF2TCleavage stimulation factor subunit 2 tau variant; May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity); Cleavage stimulation factor subunits (616 aa)
FIP1L1Pre-mRNA 3’-end-processing factor FIP1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex (594 aa)
CSTF2Cleavage stimulation factor subunit 2; One of the multiple factors required for polyadenylation and 3’-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs (By similarity) (577 aa)
XPO1Exportin-1; Mediates the nuclear export of cellular proteins (cargos) bearing a leucine-rich nuclear export signal (NES) and of RNAs. In the nucleus, in association with RANBP3, binds cooperatively to the NES on its target protein and to the GTPase RAN in its active GTP-bound form (Ran-GTP). Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the ca [...] (1071 aa)
PABPN1LEmbryonic polyadenylate-binding protein 2; Binds the poly(A) tail of mRNA; RNA binding motif containing (278 aa)
CLP1Polyribonucleotide 5’-hydroxyl-kinase Clp1; Polynucleotide kinase that can phosphorylate the 5’- hydroxyl groups of double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), double-stranded DNA (dsDNA) and double-stranded DNA-RNA hybrids. dsRNA is phosphorylated more efficiently than dsDNA, and the RNA component of a DNA-RNA hybrid is phosphorylated more efficiently than the DNA component. Plays a key role in both tRNA splicing and mRNA 3’-end formation. Component of the tRNA splicing endonuclease complex- phosphorylates the 5’-terminus of the tRNA 3’-exon during tRNA splicing; this ph [...] (425 aa)
ENSG00000258643BCL2L2-PABPN1 readthrough; Promotes cell survival. Blocks dexamethasone-induced apoptosis. Mediates survival of postmitotic Sertoli cells by suppressing death-promoting activity of BAX (333 aa)
RNPS1RNA-binding protein with serine-rich domain 1; Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the E [...] (305 aa)
CPEB1Cytoplasmic polyadenylation element-binding protein 1; Sequence-specific RNA-binding protein that regulates mRNA cytoplasmic polyadenylation and translation initiation during oocyte maturation, early development and at postsynapse sites of neurons. Binds to the cytoplasmic polyadenylation element (CPE), an uridine-rich sequence element (consensus sequence 5’-UUUUUAU- 3’) within the mRNA 3’-UTR. RNA binding results in a clear conformational change analogous to the Venus fly trap mechanism. In absence of phosphorylation and in association with TACC3 is also involved as a repressor of tra [...] (561 aa)
CPSF1Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre- mRNA 3’-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (1443 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]