• Version:
  • 11.0 [archived version]
STRINGSTRING
ATP2C2 ATP2C2 AURKA AURKA TMEM160 TMEM160 ATP2C1 ATP2C1 ATP6V1G3 ATP6V1G3 ATP2A2 ATP2A2 GOLGA5 GOLGA5 CEP55 CEP55 ATP2A3 ATP2A3 ATP2A1 ATP2A1 BMP6 BMP6 SMAD2 SMAD2 MTMR4 MTMR4 BMPR1A BMPR1A BMP7 BMP7 MTMR3 MTMR3 ACVR1C ACVR1C SMAD3 SMAD3 BMP5 BMP5 YWHAH YWHAH NEDD4 NEDD4 YWHAB YWHAB TBRG4 TBRG4 YWHAZ YWHAZ SMG7 SMG7 PRKCI PRKCI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GOLGA5Golgin subfamily A member 5; Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intra-Golgi retrograde transport (731 aa)
AURKAAurora kinase A; Mitotic serine/threonine kinase that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDE [...] (403 aa)
ACVR1CActivin receptor type-1C; Serine/threonine protein kinase which forms a receptor complex on ligand binding. The receptor complex consisting of 2 type II and 2 type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators, SMAD2 and SMAD3. Receptor for activin AB, activin B and NODAL. Plays a role in cell differentiation, growth arrest and apoptosis (493 aa)
YWHAH14-3-3 protein eta; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1; 14-3-3 phospho-serine/phospho-threonine binding proteins (246 aa)
TMEM160Transmembrane protein 160 (188 aa)
TBRG4Protein TBRG4; May play a role in cell cycle progression; FASTK mitochondrial RNA binding family (631 aa)
SMAD2Mothers against decapentaplegic homolog 2; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. May act as a tumor suppressor in colorectal carcinoma. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator (467 aa)
ATP6V1G3V-type proton ATPase subunit G 3; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase (V-ATPase). V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells (118 aa)
BMP6Bone morphogenetic protein 6; Induces cartilage and bone formation; Bone morphogenetic proteins (513 aa)
PRKCIProtein kinase C iota type; Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process a [...] (596 aa)
MTMR4Myotubularin-related protein 4; Dephosphorylates proteins phosphorylated on Ser, Thr, and Tyr residues and low molecular weight phosphatase substrate para-nitrophenylphosphate. Phosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3); Belongs to the protein-tyrosine phosphatase family. Non-receptor class myotubularin subfamily (1195 aa)
SMAD3Mothers against decapentaplegic homolog 3; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and mi [...] (425 aa)
ATP2A1Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily (1001 aa)
ATP2A3Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; ATPases Ca2+ transporting (1052 aa)
BMP5Bone morphogenetic protein 5; Induces cartilage and bone formation; Bone morphogenetic proteins (454 aa)
CEP55Centrosomal protein of 55 kDa; Plays a role in mitotic exit and cytokinesis. Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis. Not required for microtubule nucleation. Plays a role in the development of the brain and kidney (464 aa)
BMPR1ABone morphogenetic protein receptor type-1A; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for BMP2, BMP4, GDF5 and GDF6. Positively regulates chondrocyte differentiation through GDF5 interaction. Mediates induction of adipogenesis by GDF6; Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. TGFB receptor subfamily (532 aa)
YWHAB14-3-3 protein beta/alpha; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulato [...] (246 aa)
BMP7Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis; Bone morphogenetic proteins (431 aa)
YWHAZ14-3-3 protein zeta/delta; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner; Belongs to the 14-3-3 family (245 aa)
MTMR3Myotubularin-related protein 3; Phosphatase that acts on lipids with a phosphoinositol headgroup. Has phosphatase activity towards phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate. May also dephosphorylate proteins phosphorylated on Ser, Thr, and Tyr residues; Myotubularins (1198 aa)
ATP2C2Calcium-transporting ATPase type 2C member 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium; ATPases Ca2+ transporting (975 aa)
ATP2C1Calcium-transporting ATPase type 2C member 1; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily (973 aa)
NEDD4E3 ubiquitin-protein ligase NEDD4; E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Specifically ubiquitinates ’Lys-63’ in target proteins. Involved in the pathway leading to the degradation of VEGFR-2/KDFR, independently of its ubiquitin-ligase activity. Monoubiquitinates IGF1R at multiple sites, thus leading to receptor internalization and degradation in lysosomes. Ubiquitinates FGFR1, leading to receptor internalization and degradation in lysosomes. [...] (1319 aa)
SMG7Protein SMG7; Plays a role in nonsense-mediated mRNA decay. Recruits UPF1 to cytoplasmic mRNA decay bodies. Together with SMG5 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (1178 aa)
ATP2A2Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11- induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic [...] (1042 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]