• Version:
  • 11.0 [archived version]
STRINGSTRING
C6orf211 C6orf211 AMD1 AMD1 ALDH1B1 ALDH1B1 ALDH9A1 ALDH9A1 ALDH2 ALDH2 IMMP1L IMMP1L HDHD1 HDHD1 ALDH1A3 ALDH1A3 ALDH3A2 ALDH3A2 AGXT2 AGXT2 CNDP2 CNDP2 DPYS DPYS GAD1 GAD1 GAD2 GAD2 CNDP1 CNDP1 UPB1 UPB1 DPYD DPYD CARNS1 CARNS1 ALDH7A1 ALDH7A1 GADL1 GADL1 ABAT ABAT AOX1 AOX1 ALDH3A1 ALDH3A1 TTC27 TTC27 ALDH3B1 ALDH3B1 ALDH3B2 ALDH3B2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AGXT2Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family (514 aa)
ALDH3B2Aldehyde dehydrogenase family 3 member B2; Oxidizes medium and long chain aldehydes into non-toxic fatty acids; Belongs to the aldehyde dehydrogenase family (385 aa)
ALDH2Aldehyde dehydrogenase, mitochondrial; Aldehyde dehydrogenase 2 family member; Belongs to the aldehyde dehydrogenase family (517 aa)
DPYSDihydropyrimidinase; Catalyzes the second step of the reductive pyrimidine degradation, the reversible hydrolytic ring opening of dihydropyrimidines. Can catalyze the ring opening of 5,6- dihydrouracil to N-carbamyl-alanine and of 5,6-dihydrothymine to N-carbamyl-amino isobutyrate (519 aa)
IMMP1LMitochondrial inner membrane protease subunit 1; Catalyzes the removal of transit peptides required for the targeting of proteins from the mitochondrial matrix, across the inner membrane, into the inter-membrane space. Known to process the nuclear encoded protein DIABLO (166 aa)
GADL1Acidic amino acid decarboxylase GADL1; May catalyze the decarboxylation of aspartate, cysteine sulfinic acid, and cysteic acid to beta-alanine, hypotaurine and taurine, respectively. Does not exhibit any decarboxylation activity toward glutamate; Belongs to the group II decarboxylase family (521 aa)
TTC27Tetratricopeptide repeat domain containing; Belongs to the TTC27 family (843 aa)
UPB1Beta-ureidopropionase; Converts N-carbamoyl-beta-aminoisobutyrate and N- carbamoyl-beta-alanine (3-ureidopropanoate) to, respectively, beta-aminoisobutyrate and beta-alanine, ammonia and carbon dioxide (384 aa)
CNDP2Cytosolic non-specific dipeptidase; Hydrolyzes a variety of dipeptides including L-carnosine but has a strong preference for Cys-Gly. Acts as a functional tumor suppressor in gastric cancer via activation of the mitogen-activated protein kinase (MAPK) pathway. An elevated level of CNDP2 activates the p38 and JNK MAPK pathways to induce cell apoptosis, and a lower level of CNDP2 activates the ERK MAPK pathway to promote cell proliferation. Isoform 2 may play a role as tumor suppressor in hepatocellular carcinoma (HCC) cells. Catalyzes the production of N- lactoyl-amino acids from lactat [...] (475 aa)
ALDH1A3Aldehyde dehydrogenase family 1 member A3; NAD-dependent aldehyde dehydrogenase that catalyzes the formation of retinoic acid. Has high activity with all-trans retinal, and has much lower in vitro activity with acetaldehyde. Required for the biosynthesis of normal levels of retinoic acid in the embryonic ocular and nasal regions; retinoic acid is required for normal embryonic development of the eye and the nasal region (By similarity) (512 aa)
ALDH3A2Fatty aldehyde dehydrogenase; Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid (508 aa)
ALDH9A14-trimethylaminobutyraldehyde dehydrogenase; Converts gamma-trimethylaminobutyraldehyde into gamma- butyrobetaine. Catalyzes the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction (518 aa)
GAD1Glutamate decarboxylase 1; Catalyzes the production of GABA; Belongs to the group II decarboxylase family (594 aa)
CNDP1Carnosine dipeptidase 1; Belongs to the peptidase M20A family (507 aa)
C6orf211Protein-glutamate O-methyltransferase; O-methyltransferase that methylates glutamate residues of target proteins to form gamma-glutamyl methyl ester residues. Methylates PCNA, suggesting it is involved in the DNA damage response (441 aa)
AMD1S-adenosylmethionine decarboxylase proenzyme; Essential for biosynthesis of the polyamines spermidine and spermine. Promotes maintenance and self-renewal of embryonic stem cells, by maintaining spermine levels; Belongs to the eukaryotic AdoMetDC family (334 aa)
DPYDDihydropyrimidine dehydrogenase [NADP(+)]; Involved in pyrimidine base degradation. Catalyzes the reduction of uracil and thymine. Also involved the degradation of the chemotherapeutic drug 5-fluorouracil; Belongs to the dihydropyrimidine dehydrogenase family (1025 aa)
AOX1Aldehyde oxidase; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N- methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Participates in the bioactivation of prodrugs such as famciclovir, catalyzing the oxidation step from 6-deoxypenciclovir to penciclovir, which is a potent antiviral agent. Is probably involved in the regulation of reactive oxygen species [...] (1338 aa)
GAD2Glutamate decarboxylase 2; Catalyzes the production of GABA (585 aa)
ALDH1B1Aldehyde dehydrogenase X, mitochondrial; ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (517 aa)
ABAT4-aminobutyrate aminotransferase, mitochondrial; Catalyzes the conversion of gamma-aminobutyrate and L- beta-aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family (500 aa)
ALDH7A1Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism (539 aa)
CARNS1Carnosine synthase 1; Catalyzes the synthesis of carnosine and homocarnosine. Carnosine is synthesized more efficiently than homocarnosine (950 aa)
HDHD1Pseudouridine-5’-phosphatase; Dephosphorylates pseudouridine 5’-phosphate, a potential intermediate in rRNA degradation. Pseudouridine is then excreted intact in urine; Belongs to the HAD-like hydrolase superfamily. CbbY/CbbZ/Gph/YieH family (251 aa)
ALDH3A1Aldehyde dehydrogenase, dimeric NADP-preferring; ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde (Probable). They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (Probable). Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Preferentially oxidizes aromatic aldehyde substrates. Comprises about 50 percent of corneal epithelial soluble proteins (By similarity). May play a role in preventing corneal damage caused by ultraviolet light (By similarity) (453 aa)
ALDH3B1Aldehyde dehydrogenase family 3 member B1; Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde. Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde. May not metabolize short chain aldehydes. May use both NADP(+) and NAD(+) as cofactors. May have a protective role against the cytotoxicity induced by lipid peroxidation (468 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]