• Version:
  • 11.0 [archived version]
STRINGSTRING
TEX10 TEX10 ORC5 ORC5 ORC2 ORC2 HAT1 HAT1 TP53BP1 TP53BP1 MCM9 MCM9 CDC6 CDC6 MCM8 MCM8 POLA2 POLA2 ORC3 ORC3 ORC1 ORC1 ORC4 ORC4 MCM3 MCM3 CDC45 CDC45 MCM4 MCM4 TIPIN TIPIN MCM7 MCM7 CDC7 CDC7 MCMBP MCMBP MCM5 MCM5 MCM10 MCM10 TIMELESS TIMELESS GINS1 GINS1 GINS4 GINS4 GINS2 GINS2 GINS3 GINS3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CDC6Cell division control protein 6 homolog; Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated (560 aa)
MCM5DNA replication licensing factor MCM5; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (734 aa)
ORC2Origin recognition complex subunit 2; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin- mediated proteasomal degradation. Also stabilizes ORC3; Belongs to the ORC2 family (577 aa)
GINS2DNA replication complex GINS protein PSF2; The GINS complex plays an essential role in the initiation of DNA replication, and progression of DNA replication forks. GINS complex seems to bind preferentially to single- stranded DNA (185 aa)
ORC3Origin recognition complex subunit 3; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 (712 aa)
TIPINTIMELESS-interacting protein; Plays an important role in the control of DNA replication and the maintenance of replication fork stability. Important for cell survival after DNA damage or replication stress. May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light. Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic st [...] (301 aa)
MCM4DNA replication licensing factor MCM4; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (863 aa)
GINS1DNA replication complex GINS protein PSF1; The GINS complex plays an essential role in the initiation of DNA replication, and progression of DNA replication forks. GINS complex seems to bind preferentially to single- stranded DNA. GINS1 is essential for function (196 aa)
HAT1Histone acetyltransferase type B catalytic subunit; Acetylates soluble but not nucleosomal histone H4 at ’Lys-5’ (H4K5ac) and ’Lys-12’ (H4K12ac) and, to a lesser extent, acetylates histone H2A at ’Lys-5’ (H2AK5ac). Has intrinsic substrate specificity that modifies lysine in recognition sequence GXGKXG. May be involved in nucleosome assembly during DNA replication and repair as part of the histone H3.1 and H3.3 complexes. May play a role in DNA repair in response to free radical damage; Belongs to the HAT1 family (419 aa)
POLA2DNA polymerase alpha subunit B; May play an essential role at the early stage of chromosomal DNA replication by coupling the polymerase alpha/primase complex to the cellular replication machinery (598 aa)
GINS4DNA replication complex GINS protein SLD5; The GINS complex plays an essential role in the initiation of DNA replication, and progression of DNA replication forks. GINS4 is important for GINS complex assembly. GINS complex seems to bind preferentially to single-stranded DNA (223 aa)
ORC5Origin recognition complex subunit 5; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication; Belongs to the ORC5 family (435 aa)
MCM7DNA replication licensing factor MCM7; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (719 aa)
MCM9DNA helicase MCM9; Component of the MCM8-MCM9 complex, a complex involved in homologous recombination repair following DNA interstrand cross-links and plays a key role during gametogenesis. The MCM8- MCM9 complex probably acts as a hexameric helicase downstream of the Fanconi anemia proteins BRCA2 and RAD51 and is required to process aberrant forks into homologous recombination substrates and to orchestrate homologous recombination with resection, fork stabilization and fork restart (1143 aa)
MCMBPMini-chromosome maintenance complex-binding protein; Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion (642 aa)
ORC1Origin recognition complex subunit 1; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication; Belongs to the ORC1 family (861 aa)
TEX10Testis-expressed protein 10; Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit (929 aa)
MCM8DNA helicase MCM8; Component of the MCM8-MCM9 complex, a complex involved in homologous recombination repair following DNA interstrand cross-links and plays a key role during gametogenesis. The MCM8- MCM9 complex probably acts as a hexameric helicase downstream of the Fanconi anemia proteins BRCA2 and RAD51 and is required to process aberrant forks into homologous recombination substrates and to orchestrate homologous recombination with resection, fork stabilization and fork restart. May also play a non-essential for DNA replication- may be involved in the activation of the prereplicat [...] (880 aa)
TP53BP1TP53-binding protein 1; Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis. Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1. In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs si [...] (1977 aa)
CDC7Cell division cycle 7-related protein kinase; Seems to phosphorylate critical substrates that regulate the G1/S phase transition and/or DNA replication. Can phosphorylates MCM2 and MCM3 (574 aa)
GINS3GINS complex subunit 3 (255 aa)
CDC45Cell division control protein 45 homolog; Required for initiation of chromosomal DNA replication (598 aa)
MCM10Protein MCM10 homolog; Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38; Belongs to the MCM10 family (875 aa)
ORC4Origin recognition complex subunit 4; Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre- replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3; Belongs to the ORC4 family (436 aa)
TIMELESSProtein timeless homolog; Plays an important role in the control of DNA replication, maintenance of replication fork stability, maintenance of genome stability throughout normal DNA replication and in the regulation of the circadian clock. Involved in the determination of period length and in the DNA damage-dependent phase advancing of the circadian clock. Negatively regulates CLOCK|NPAS2-ARTNL/BMAL1|ARTNL2/BMAL2-induced transactivation of PER1 possibly via translocation of PER1 into the nucleus. Forms a complex with TIPIN and this complex regulates DNA replication processes under both [...] (1208 aa)
MCM3DNA replication licensing factor MCM3; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for ’once per cell cycle’ DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (853 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]