• Version:
  • 11.0 [archived version]
STRINGSTRING
RFWD3 RFWD3 SMARCAL1 SMARCAL1 RPA2 RPA2 C4orf29 C4orf29 RPA1 RPA1 RPA3 RPA3 PRIMPOL PRIMPOL C10orf2 C10orf2 ECI2 ECI2 TIPIN TIPIN TIMELESS TIMELESS CLSPN CLSPN CDKN2D CDKN2D NAV1 NAV1 HERC2 HERC2 NEURL4 NEURL4
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RPA3Replication protein A 14 kDa subunit; As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP [...] (121 aa)
RPA1Replication protein A 70 kDa DNA-binding subunit; As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates, that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruit [...] (616 aa)
HERC2E3 ubiquitin-protein ligase HERC2; E3 ubiquitin-protein ligase that regulates ubiquitin- dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of ’Lys-63’-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscill [...] (4834 aa)
TIPINTIMELESS-interacting protein; Plays an important role in the control of DNA replication and the maintenance of replication fork stability. Important for cell survival after DNA damage or replication stress. May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light. Forms a complex with TIMELESS and this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic st [...] (301 aa)
C10orf2Twinkle protein, mitochondrial; Involved in mitochondrial DNA (mtDNA) metabolism. Could function as an adenine nucleotide-dependent DNA helicase. Function inferred to be critical for lifetime maintenance of mtDNA integrity. In vitro, forms in combination with POLG, a processive replication machinery, which can use double-stranded DNA (dsDNA) as template to synthesize single-stranded DNA (ssDNA) molecules. May be a key regulator of mtDNA copy number in mammals (684 aa)
CLSPNClaspin; Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation. Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR- dependent phosphorylation of both proteins. Can also bind specifically to branched DNA structures and may associate with S- phase chromatin following formation of the pre-replication complex (pre-RC). This may indicate a role for this protein as a sensor which monitors the integrity of DNA replication forks (1339 aa)
PRIMPOLDNA-directed primase/polymerase protein; DNA primase and DNA polymerase able to initiate de novo DNA synthesis using dNTPs. Shows a high capacity to tolerate DNA damage lesions such as 8oxoG and abasic sites in DNA. Involved in translesion synthesis via its primase activity by mediating uninterrupted fork progression after programmed or damage-induced fork arrest and by reinitiating DNA synthesis after dNTP depletion. Required for mitochondrial DNA (mtDNA) synthesis, suggesting it may be involved in DNA tolerance during the replication of mitochondrial DNA. Has non-overlapping function [...] (560 aa)
SMARCAL1SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1; ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks (954 aa)
RFWD3E3 ubiquitin-protein ligase RFWD3; E3 ubiquitin-protein ligase required for the repair of DNA interstrand cross-links (ICL) in response to DNA damage. Plays a key role in RPA- mediated DNA damage signaling and repair. Acts by mediating ubiquitination of the RPA complex (RPA1, RPA2 and RPA3 subunits) and RAD51 at stalled replication forks, leading to remove them from DNA damage sites and promote homologous recombination. Also mediates the ubiquitination of p53/TP53 in the late response to DNA damage, and acts as a positive regulator of p53/TP53 stability, thereby regulating the G1/S DNA [...] (774 aa)
NAV1Neuron navigator 1; May be involved in neuronal migration (1877 aa)
RPA2Replication protein A 32 kDa subunit; As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates, that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRI [...] (278 aa)
ECI2Enoyl-CoA delta isomerase 2, mitochondrial; Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. Has a preference for 3-trans substrates (By similarity) (394 aa)
CDKN2DCyclin-dependent kinase 4 inhibitor D; Interacts strongly with CDK4 and CDK6 and inhibits them; Belongs to the CDKN2 cyclin-dependent kinase inhibitor family (166 aa)
C4orf29Protein ABHD18; Chromosome 4 open reading frame 29; Belongs to the AB hydrolase superfamily (414 aa)
NEURL4Neuralized-like protein 4; Promotes CCP110 ubiquitination and proteasome-dependent degradation. By counteracting accumulation of CP110, maintains normal centriolar homeostasis and preventing formation of ectopic microtubular organizing centers (1562 aa)
TIMELESSProtein timeless homolog; Plays an important role in the control of DNA replication, maintenance of replication fork stability, maintenance of genome stability throughout normal DNA replication and in the regulation of the circadian clock. Involved in the determination of period length and in the DNA damage-dependent phase advancing of the circadian clock. Negatively regulates CLOCK|NPAS2-ARTNL/BMAL1|ARTNL2/BMAL2-induced transactivation of PER1 possibly via translocation of PER1 into the nucleus. Forms a complex with TIPIN and this complex regulates DNA replication processes under both [...] (1208 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]