• Version:
  • 11.0 [archived version]
STRINGSTRING
ELK4 ELK4 SGK1 SGK1 ETS1 ETS1 FOS FOS RAF1 RAF1 GAPDH GAPDH ZKSCAN1 ZKSCAN1 MAP2K1 MAP2K1 MAP2K6 MAP2K6 MAPKAPK2 MAPKAPK2 DUSP6 DUSP6 MAP2K2 MAP2K2 MAP3K2 MAP3K2 MAPKAPK3 MAPKAPK3 MAP2K3 MAP2K3 PTPRR PTPRR MAPK7 MAPK7 MEF2C MEF2C MAP2K5 MAP2K5 PEA15 PEA15 DUSP7 DUSP7 MEF2A MEF2A MEF2D MEF2D UBE2C UBE2C PFDN2 PFDN2 GPSM3 GPSM3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MAP2K5Dual specificity mitogen-activated protein kinase kinase 5; Acts as a scaffold for the formation of a ternary MAP3K2/MAP3K3-MAP3K5-MAPK7 signaling complex. Activation of this pathway appears to play a critical role in protecting cells from stress-induced apoptosis, neuronal survival and cardiac development and angiogenesis; Belongs to the protein kinase superfamily. STE Ser/Thr protein kinase family. MAP kinase kinase subfamily (448 aa)
GAPDHGlyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] (335 aa)
RAF1RAF proto-oncogene serine/threonine-protein kinase; Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kina [...] (648 aa)
MAP2K2Dual specificity mitogen-activated protein kinase kinase 2; Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in MAP kinases. Activates the ERK1 and ERK2 MAP kinases (By similarity) (400 aa)
MEF2DMyocyte-specific enhancer factor 2D; Transcriptional activator which binds specifically to the MEF2 element, 5’-YTA[AT](4)TAR-3’, found in numerous muscle- specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity) (521 aa)
DUSP6Dual specificity protein phosphatase 6; Inactivates MAP kinases. Has a specificity for the ERK family. Plays an important role in alleviating chronic postoperative pain. Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity); Belongs to the protein-tyrosine phosphatase family [...] (381 aa)
PTPRRReceptor-type tyrosine-protein phosphatase R; Sequesters mitogen-activated protein kinases (MAPKs) such as MAPK1, MAPK3 and MAPK14 in the cytoplasm in an inactive form. The MAPKs bind to a dephosphorylated kinase interacting motif, phosphorylation of which by the protein kinase A complex releases the MAPKs for activation and translocation into the nucleus (By similarity); Protein tyrosine phosphatases, receptor type (657 aa)
MAP2K1Dual specificity mitogen-activated protein kinase kinase 1; Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine resid [...] (393 aa)
FOSProto-oncogene c-Fos; Nuclear phosphoprotein which forms a tight but non- covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites. On TGF-beta activation, forms a multimeric SMAD3/SMAD4/JUN/FOS complex at the AP1/SMAD- binding site to regulate TGF-beta-mediated signaling. Has a critical function in regulating the development of cells destined to form and maintain the skeleton. It is thought to have an important role in signal transduction, cell proliferation and different [...] (380 aa)
MAPK7Mitogen-activated protein kinase 7; Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras- independent and MAP2K5-dependent pathway. May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/E [...] (816 aa)
ZKSCAN1Zinc finger protein with KRAB and SCAN domains 1; May be involved in transcriptional regulation; SCAN domain containing (563 aa)
MEF2CMyocyte-specific enhancer factor 2C; Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle- specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes a [...] (483 aa)
MAP2K3Dual specificity mitogen-activated protein kinase kinase 3; Dual specificity kinase. Is activated by cytokines and environmental stress in vivo. Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinase p38. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14; Belongs to the protein kinase superfamily. STE Ser/Thr protein kinase family. MAP kinase kinase subfamily (347 aa)
MEF2AMyocyte-specific enhancer factor 2A; Transcriptional activator which binds specifically to the MEF2 element, 5’-YTA[AT](4)TAR-3’, found in numerous muscle- specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylat [...] (499 aa)
UBE2CUbiquitin-conjugating enzyme E2 C; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes ’Lys- 11’- and ’Lys-48’-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis. Acts by initiating ’Lys-11’-linked polyubiquitin chains on APC/C substrates, leading to the degradation of APC/C substrates by the proteasome and promoting mitotic exit; Ubiquitin conjugating enzymes E2 (179 aa)
ELK4ETS domain-containing protein Elk-4; Involved in both transcriptional activation and repression. Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 at promoters, followed by deacetylation of histone H3 at ’Lys-18’ (H3K18Ac) and subsequent transcription repression. Forms a ternary complex with the serum response factor (SRF). Requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5’side of SRF, but does not bind DNA autonomously (431 aa)
MAPKAPK2MAP kinase-activated protein kinase 2; Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT1 [...] (400 aa)
SGK1Serine/threonine-protein kinase Sgk1; Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cellular enzymes, transcription factors, neuronal excitability, cell growth, proliferation, survival, migration and apoptosis. Plays an important role in cellular stress response. Contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peri [...] (526 aa)
PFDN2Prefoldin subunit 2; Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins; Belongs to the prefoldin subunit beta family (154 aa)
PEA15Astrocytic phosphoprotein PEA-15; Blocks Ras-mediated inhibition of integrin activation and modulates the ERK MAP kinase cascade. Inhibits RPS6KA3 activities by retaining it in the cytoplasm (By similarity). Inhibits both TNFRSF6- and TNFRSF1A-mediated CASP8 activity and apoptosis. Regulates glucose transport by controlling both the content of SLC2A1 glucose transporters on the plasma membrane and the insulin-dependent trafficking of SLC2A4 from the cell interior to the surface; Death effector domain containing (151 aa)
GPSM3G-protein-signaling modulator 3; Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins (160 aa)
ETS1Protein C-ets-1; Transcription factor. Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts. May control the differentiation, survival and proliferation of lymphoid cells. May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (485 aa)
MAP3K2Mitogen-activated protein kinase kinase kinase 2; Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics (619 aa)
MAPKAPK3MAP kinase-activated protein kinase 3; Stress-activated serine/threonine-protein kinase involved in cytokines production, endocytosis, cell migration, chromatin remodeling and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38- alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. MAPKAPK2 and MAPKAPK3, share the same function and substrate specificity, but MAPKAPK3 kinase activity and level in protein expression are lower compared t [...] (382 aa)
DUSP7Dual specificity protein phosphatase 7; Regulates the activity of the MAP kinase family in response to changes in the cellular environment. PYST2-S may act as a negative regulator of PYST2-L although it is unclear whether this is by competing for transcription, translation or activation factors (419 aa)
MAP2K6Dual specificity mitogen-activated protein kinase kinase 6; Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. With MAP3K3/MKK3, catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinases p38 MAPK11, MAPK12, MAPK13 and MAPK14 and plays an important role in the regulation of cellular responses to cytokines and all kinds of stresses. Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are both essential for the activation of MAPK11 and MAPK13 induced by environmental stress, whereas MAP2K6/MKK6 i [...] (334 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]