• Version:
  • 11.0 [archived version]
STRINGSTRING
PLA2G4A PLA2G4A RIPK2 RIPK2 MST1R MST1R MAP3K10 MAP3K10 GSK3A GSK3A AKT3 AKT3 LRRK2 LRRK2 MFSD3 MFSD3 RIPK1 RIPK1 RIPK3 RIPK3 PKDCC PKDCC UAP1 UAP1 ANKK1 ANKK1 WEE2 WEE2 MLKL MLKL APPBP2 APPBP2 UAP1L1 UAP1L1 WEE1 WEE1 TOMM70A TOMM70A AMD1 AMD1 RRM1 RRM1 UGP2 UGP2 ARAF ARAF PKMYT1 PKMYT1 CSK CSK ZAP70 ZAP70
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
APPBP2Amyloid protein-binding protein 2; May play a role in intracellular protein transport. May be involved in the translocation of APP along microtubules toward the cell surface (585 aa)
RIPK3Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes- GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production (518 aa)
CSKTyrosine-protein kinase CSK; Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or ada [...] (450 aa)
RIPK2Receptor-interacting serine/threonine-protein kinase 2; Serine/threonine/tyrosine kinase that plays an essential role in modulation of innate and adaptive immune responses. Upon stimulation by bacterial peptidoglycans, NOD1 and NOD2 are activated, oligomerize and recruit RIPK2 through CARD-CARD domains. Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Once recruited, RIPK2 autophosphorylates and undergoes ’Lys-63’-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3 [...] (540 aa)
GSK3AGlycogen synthase kinase-3 alpha; Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1. Requires primed phosphorylation of the majority of its substrates. Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. Regulates glycogen metabolism in liver, but not in muscle. M [...] (483 aa)
MAP3K10Mitogen-activated protein kinase kinase kinase 10; Activates the JUN N-terminal pathway; Mitogen-activated protein kinase kinase kinases (954 aa)
RIPK1Receptor-interacting serine/threonine-protein kinase 1; Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at ’Ser-728’ in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via ’Lys-63’-link chains acts as a critical enhancer of communication with do [...] (671 aa)
PKMYT1Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase; Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins. Mediates phosphorylation of CDK1 predominantly on ’Thr-14’. Also involved in Golgi fragmentation. May be involved in phosphorylation of CDK1 on ’Tyr-15’ to a lesser degree, however tyrosine kinase activity is unclear and may be indirect. May be a downstream target of Notch signaling pathway during eye development; Protein phosphatase 1 regulatory subunits (499 aa)
AKT3RAC-gamma serine/threonine-protein kinase; AKT3 is one of 3 closely related serine/threonine- protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial f [...] (479 aa)
ZAP70Tyrosine-protein kinase ZAP-70; Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Contributes also to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated T [...] (619 aa)
TOMM70AMitochondrial import receptor subunit TOM70; Receptor that accelerates the import of all mitochondrial precursor proteins (608 aa)
ARAFSerine/threonine-protein kinase A-Raf; Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade; Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. RAF subfamily (609 aa)
PKDCCExtracellular tyrosine-protein kinase PKDCC; Secreted tyrosine-protein kinase that mediates phosphorylation of extracellular proteins and endogenous proteins in the secretory pathway, which is essential for patterning at organogenesis stages. Mediates phosphorylation of MMP1, MMP13, MMP14, MMP19 and ERP29. Probably plays a role in platelets- rapidly and quantitatively secreted from platelets in response to stimulation of platelet degranulation. May also have serine/threonine protein kinase activity. Required for longitudinal bone growth through regulation of chondrocyte differentiation [...] (493 aa)
MST1RMacrophage-stimulating protein receptor; Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to MST1 ligand. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces autophosphorylation of RON on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1 or the adapter GAB1. Recruitment of these downstream effectors by RON leads to the ac [...] (1400 aa)
LRRK2Leucine-rich repeat serine/threonine-protein kinase 2; Positively regulates autophagy through a calcium- dependent activation of the CaMKK/AMPK signaling pathway. The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes. Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose 6 phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner. Regulates neuronal process morphology in the intact [...] (2527 aa)
RRM1Ribonucleoside-diphosphate reductase large subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (792 aa)
MFSD3Major facilitator superfamily domain containing 3 (412 aa)
ANKK1Ankyrin repeat and kinase domain containing 1; Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family (765 aa)
MLKLMixed lineage kinase domain-like protein; Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process. Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage. Does not have protein kinase activity (471 aa)
UGP2UTP--glucose-1-phosphate uridylyltransferase; Plays a central role as a glucosyl donor in cellular metabolic pathways; Belongs to the UDPGP type 1 family (508 aa)
PLA2G4ACytosolic phospholipase A2; Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response; C2 domain containing phospholipases (749 aa)
UAP1UDP-N-acetylhexosamine pyrophosphorylase; Converts UTP and GlcNAc-1-P into UDP-GlcNAc, and UTP and GalNAc-1-P into UDP-GalNAc. Isoform AGX1 has 2 to 3 times higher activity towards GalNAc-1-P, while isoform AGX2 has 8 times more activity towards GlcNAc-1-P (505 aa)
AMD1S-adenosylmethionine decarboxylase proenzyme; Essential for biosynthesis of the polyamines spermidine and spermine. Promotes maintenance and self-renewal of embryonic stem cells, by maintaining spermine levels; Belongs to the eukaryotic AdoMetDC family (334 aa)
WEE2Wee1-like protein kinase 2; Oocyte-specific protein tyrosine kinase that phosphorylates and inhibits CDK1 and acts as a key regulator of meiosis during both prophase I and metaphase II. Required to maintain meiotic arrest in oocytes during the germinal vesicle (GV) stage, a long period of quiescence at dictyate prophase I, by phosphorylating CDK1 at ’Tyr-15’, leading to inhibit CDK1 activity and prevent meiotic reentry. Also required for metaphase II exit during egg activation by phosphorylating CDK1 at ’Tyr-15’, to ensure exit from meiosis in oocytes and promote pronuclear formation ( [...] (567 aa)
UAP1L1UDP-N-acetylhexosamine pyrophosphorylase-like protein 1; UDP-N-acetylglucosamine pyrophosphorylase 1 like 1 (507 aa)
WEE1Wee1-like protein kinase; Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on ’Tyr-15’. Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase. Phosphorylation of cyclin B1-CDK1 occurs exclusively on ’Tyr-15’ and phosphorylation of monomeric CDK1 does not occur. Its activity increases during S and G2 phases and decreases at M phase wh [...] (646 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]