• Version:
  • 11.0 [archived version]
STRINGSTRING
MAPK15 MAPK15 ACSL4 ACSL4 ACSL3 ACSL3 MAPK12 MAPK12 NOTCH2 NOTCH2 ARNTL2 ARNTL2 MAPK11 MAPK11 MAPK13 MAPK13 NOTCH3 NOTCH3 MAPK3 MAPK3 NOTCH1 NOTCH1 MAPK14 MAPK14 MAPK1 MAPK1 OLFM2 OLFM2 CRB1 CRB1 MAPK7 MAPK7 PRPF3 PRPF3 METTL3 METTL3 NSUN2 NSUN2 PPP1R42 PPP1R42 KIAA1429 KIAA1429 WTAP WTAP MAPK4 MAPK4 METTL14 METTL14 MAPK6 MAPK6 RQCD1 RQCD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MAPK13Mitogen-activated protein kinase 13; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK13 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK13 is one of the less studie [...] (365 aa)
MAPK12Mitogen-activated protein kinase 12; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK12 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstre [...] (367 aa)
MAPK1Mitogen-activated protein kinase 1; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (360 aa)
MAPK14Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] (360 aa)
NOTCH2Neurogenic locus notch homolog protein 2; Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL- [...] (2471 aa)
MAPK6Mitogen-activated protein kinase 6; Atypical MAPK protein. Phosphorylates microtubule- associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events- upon interaction with atypical MAPKAPK5, ERK3/MAPK6 is phosphorylated at Ser-189 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6. May promote entry in the cell cycle (By similarity); Mitogen-activated protein kinases (721 aa)
MAPK3Mitogen-activated protein kinase 3; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (379 aa)
NOTCH3Neurogenic locus notch homolog protein 3; Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity) (2321 aa)
NSUN2tRNA (cytosine(34)-C(5))-methyltransferase; RNA methyltransferase that methylates tRNAs, and possibly RNA polymerase III transcripts. Methylates cytosine to 5- methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors. May act downstream of Myc to regulate epidermal cell growth and proliferation. Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (767 aa)
OLFM2Noelin-2; Involved in transforming growth factor beta (TGF-beta)- induced smooth muscle differentiation. TGF-beta induces expression and translocation of OLFM2 to the nucleus where it binds to SRF, causing its dissociation from the transcriptional repressor HEY2/HERP1 and facilitating binding of SRF to target genes. Plays a role in AMPAR complex organization (By similarity). Is a regulator of vascular smooth-muscle cell (SMC) phenotypic switching, that acts by promoting RUNX2 and inhibiting MYOCD binding to SRF. SMC phenotypic switching is the process through which vascular SMCs underg [...] (454 aa)
ARNTL2Aryl hydrocarbon receptor nuclear translocator-like protein 2; Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time- keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ’circa’ (about) and ’diem’ (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressu [...] (636 aa)
RQCD1CCR4-NOT transcription complex subunit 9; Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Involved in down-regulation of MYB- and JUN-dependent transcription. May play a role in cell differentiation (By similarity). Can bind oligonucleotides, such as poly-G, poly-C o [...] (299 aa)
NOTCH1Neurogenic locus notch homolog protein 1; Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4+ [...] (2555 aa)
KIAA1429Protein virilizer homolog; Required for N6-methyladenosine (m6A) methylation of mRNAs, a modification that plays a role in the efficiency of mRNA splicing and processing. Involved in mRNA splicing regulation, probably via its function in m6A methylation (Probable); Belongs to the vir family (1812 aa)
METTL3N6-adenosine-methyltransferase catalytic subunit; The METTL3-METTL14 heterodimer forms a N6- methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and haematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing. In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core. N6-methyladenosine (m6A), which takes place at the 5’-[AG]GAC-3’ consensus sites of some mRNAs, play [...] (580 aa)
MAPK7Mitogen-activated protein kinase 7; Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras- independent and MAP2K5-dependent pathway. May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/E [...] (816 aa)
PPP1R42Protein phosphatase 1 regulatory subunit 42; Regulates phosphatase activity of protein phosphatase 1 (PP1) complexes in the testis (228 aa)
PRPF3U4/U6 small nuclear ribonucleoprotein Prp3; Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (683 aa)
MAPK11Mitogen-activated protein kinase 11; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MA [...] (364 aa)
MAPK15Mitogen-activated protein kinase 15; In vitro, phosphorylates MBP; Mitogen-activated protein kinases (544 aa)
ACSL4Long-chain-fatty-acid--CoA ligase 4; Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates; Acyl-CoA synthetase family (711 aa)
ACSL3Long-chain-fatty-acid--CoA ligase 3; Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL3 mediates hepatic lipogenesis (By similarity). Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates (By similarity). Has mainly an anabolic role in energy metabolism. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins); Belongs to the ATP-dependent AMP-binding enzyme family (720 aa)
WTAPPre-mRNA-splicing regulator WTAP; Regulatory subunit of the WMM N6-methyltransferase complex, a multiprotein complex that mediates N6-methyladenosine (m6A) methylation of some adenosine residues of some mRNAs and plays a role in the efficiency of mRNA splicing, processing and mRNA stability. Required for accumulation of METTL3 and METTL14 to nuclear speckle. Acts as a mRNA splicing regulator. Regulates G2/M cell-cycle transition by binding to the 3’ UTR of CCNA2, which enhances its stability. Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (396 aa)
CRB1Protein crumbs homolog 1; Plays a role in photoreceptor morphogenesis in the retina. May maintain cell polarization and adhesion; Belongs to the Crumbs protein family (1406 aa)
METTL14N6-adenosine-methyltransferase non-catalytic subunit; The METTL3-METTL14 heterodimer forms a N6- methyltransferase complex that methylates adenosine residues at the N(6) position of some mRNAs and regulates the circadian clock, differentiation of embryonic stem cells and cortical neurogenesis. In the heterodimer formed with METTL3, METTL14 constitutes the RNA-binding scaffold that recognizes the substrate rather than the catalytic core. N6- methyladenosine (m6A), which takes place at the 5’-[AG]GAC-3’ consensus sites of some mRNAs, plays a role in mRNA stability and processing. M6A act [...] (456 aa)
MAPK4Mitogen-activated protein kinase 4; Atypical MAPK protein. Phosphorylates microtubule- associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events- upon interaction with atypical MAPKAPK5, ERK4/MAPK4 is phosphorylated at Ser-186 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK4/MAPK4. May promote entry in the cell cycle (By similarity); Mitogen-activated protein kinases (587 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]