• Version:
  • 11.0 [archived version]
STRINGSTRING
TKTL1 TKTL1 TKTL2 TKTL2 PPARD PPARD LDHD LDHD ALDOA ALDOA PDPR PDPR ALDOC ALDOC TALDO1 TALDO1 RXRA RXRA PDHA2 PDHA2 TKT TKT ALDOB ALDOB DLD DLD DHTKD1 DHTKD1 PDHB PDHB PDHA1 PDHA1 GCSH GCSH GPI GPI GLYCTK GLYCTK PC PC BCKDHA BCKDHA LIPT1 LIPT1 PCK1 PCK1 PCK2 PCK2 ACSS2 ACSS2 ACSS1 ACSS1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DLDDihydrolipoyl dehydrogenase, mitochondrial; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as an E3 component of three alpha-ketoacid dehydrogenase complexes (pyruvate-, alpha-ketoglutarate-, and branched-chain amino acid-dehydrogenase complex). In monomeric form has additional moonlighting function as serine protease. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction (By similarity) (509 aa)
PCK2Phosphoenolpyruvate carboxykinase [GTP], mitochondrial; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family (640 aa)
ALDOCAldolase, fructose-bisphosphate C (364 aa)
ACSS2Acetyl-coenzyme A synthetase, cytoplasmic; Activates acetate so that it can be used for lipid synthesis or for energy generation; Acyl-CoA synthetase family (714 aa)
DHTKD1Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1, mitochondrial; The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components- 2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (By similarity) (919 aa)
BCKDHA2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial; The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components- branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3) (445 aa)
TKTL2Transketolase-like protein 2; Plays an essential role in total transketolase activity and cell proliferation in cancer cells; after transfection with anti-TKTL1 siRNA, total transketolase activity dramatically decreases and proliferation was significantly inhibited in cancer cells. Plays a pivotal role in carcinogenesis; Belongs to the transketolase family (626 aa)
PDPRPyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial; Decreases the sensitivity of PDP1 to magnesium ions, and this inhibition is reversed by the polyamine spermine; Belongs to the GcvT family (879 aa)
PDHA2Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (388 aa)
LDHDProbable D-lactate dehydrogenase, mitochondrial; Lactate dehydrogenase D; Belongs to the FAD-binding oxidoreductase/transferase type 4 family (507 aa)
PDHBPyruvate dehydrogenase E1 component subunit beta, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (359 aa)
PPARDPeroxisome proliferator-activated receptor delta; Ligand-activated transcription factor. Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Has a preference for poly-unsaturated fatty acids, such as gamma-linoleic acid and eicosapentanoic acid. Once activated by a ligand, the receptor binds to promoter elements of target genes. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the acyl-CoA oxidase gene. Decreases expression of NPC1L1 once activated by a ligand; Belongs to the nuclear hormone [...] (441 aa)
ACSS1Acetyl-coenzyme A synthetase 2-like, mitochondrial; Important for maintaining normal body temperature during fasting and for energy homeostasis. Essential for energy expenditure under ketogenic conditions (By similarity). Converts acetate to acetyl-CoA so that it can be used for oxidation through the tricarboxylic cycle to produce ATP and CO(2); Belongs to the ATP-dependent AMP-binding enzyme family (689 aa)
GCSHGlycine cleavage system H protein, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST); Belongs to the GcvH family (173 aa)
PCK1Phosphoenolpyruvate carboxykinase, cytosolic [GTP]; Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family (622 aa)
TALDO1Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (337 aa)
TKTL1Transketolase-like protein 1; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (596 aa)
ALDOBAldolase, fructose-bisphosphate B (364 aa)
PDHA1Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (428 aa)
LIPT1Lipoyltransferase 1, mitochondrial; Catalyzes the transfer of the lipoyl group from lipoyl- AMP to the specific lysine residue of lipoyl domains of lipoate- dependent enzymes; Belongs to the LplA family (373 aa)
PCPyruvate carboxylase, mitochondrial; Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate (1178 aa)
ALDOAFructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity); Belongs to the class I fructose-bisphosphate aldolase family (418 aa)
GLYCTKGlycerate kinase; Belongs to the glycerate kinase type-2 family (523 aa)
TKTTransketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate; Belongs to the transketolase family (631 aa)
GPIGlucose-6-phosphate isomerase; Besides it’s role as a glycolytic enzyme, mammalian GPI can function as a tumor-secreted cytokine and an angiogenic factor (AMF) that stimulates endothelial cell motility. GPI is also a neurotrophic factor (Neuroleukin) for spinal and sensory neurons (569 aa)
RXRARetinoic acid receptor RXR-alpha; Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5’-AGGTCA-3’ sites known as DR1-DR5. The high affinity ligand for RXRs is 9-cis retinoic acid. RXRA serves as a common heterodimeric partner for a number of nuclear receptors. In the absence of ligand, the RXR-RAR heterodimers ass [...] (462 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]