• Version:
  • 11.0 [archived version]
STRINGSTRING
MFSD11 MFSD11 SNW1 SNW1 KIAA0368 KIAA0368 STUB1 STUB1 KEAP1 KEAP1 B4GALT5 B4GALT5 TP53 TP53 C1QTNF2 C1QTNF2 KLHL20 KLHL20 UBE2Q1 UBE2Q1 USP11 USP11 RNF7 RNF7 ATG7 ATG7 UBA7 UBA7 ERP44 ERP44 UBA1 UBA1 B4GALT4 B4GALT4 UBA5 UBA5 UBA3 UBA3 UBA6 UBA6 B4GALT1 B4GALT1 NPRL2 NPRL2 B4GALT2 B4GALT2 B4GALT6 B4GALT6 B4GALT3 B4GALT3 GPR161 GPR161
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KEAP1Kelch-like ECH-associated protein 1; Acts as a substrate adapter protein for the E3 ubiquitin ligase complex formed by CUL3 and RBX1 and targets NFE2L2/NRF2 for ubiquitination and degradation by the proteasome, thus resulting in the suppression of its transcriptional activity and the repression of antioxidant response element-mediated detoxifying enzyme gene expression. Retains NFE2L2/NRF2 and may also retain BPTF in the cytosol. Targets PGAM5 for ubiquitination and degradation by the proteasome; BTB domain containing (624 aa)
KLHL20Kelch-like protein 20; Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex involved in interferon response and anterograde Golgi to endosome transport. The BCR(KLHL20) E3 ubiquitin ligase complex mediates the ubiquitination of DAPK1, leading to its degradation by the proteasome, thereby acting as a negative regulator of apoptosis. The BCR(KLHL20) E3 ubiquitin ligase complex also specifically mediates ’Lys-33’- linked ubiquitination. Involved in anterograde Golgi to endosome transport by mediating ’Lys-33’-linked ubiquitination of CORO7, promoting int [...] (609 aa)
USP11Ubiquitin carboxyl-terminal hydrolase 11; Protease that can remove conjugated ubiquitin from target proteins and polyubiquitin chains. Inhibits the degradation of target proteins by the proteasome. Cleaves preferentially ’Lys-6’ and ’Lys-63’-linked ubiquitin chains. Has lower activity with ’Lys-11’ and ’Lys-33’-linked ubiquitin chains, and extremely low activity with ’Lys-27’, ’Lys-29’ and ’Lys-48’- linked ubiquitin chains (in vitro). Plays a role in the regulation of pathways leading to NF-kappa-B activation. Plays a role in the regulation of DNA repair after double-stranded DNA break [...] (963 aa)
STUB1E3 ubiquitin-protein ligase CHIP; E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation. Collaborates with ATXN3 in the degradation of misfolded chaperone substrates- ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension. Ubiquitinates NOS1 in concert with Hsp70 and Hsp40. Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90. Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation. Me [...] (303 aa)
NPRL2GATOR complex protein NPRL2; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway; Belongs to the NPR2 family (380 aa)
KIAA0368Proteasome-associated protein ECM29 homolog; Adapter/scaffolding protein that binds to the 26S proteasome, motor proteins and other compartment specific proteins. May couple the proteasome to different compartments including endosome, endoplasmic reticulum and centrosome. May play a role in ERAD and other enhanced proteolyis (2017 aa)
SNW1SNW domain-containing protein 1; Involved in transcriptional regulation. Modulates TGF- beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1- mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coac [...] (536 aa)
ERP44Endoplasmic reticulum resident protein 44; Mediates thiol-dependent retention in the early secretory pathway, forming mixed disulfides with substrate proteins through its conserved CRFS motif. Inhibits the calcium channel activity of ITPR1. May have a role in the control of oxidative protein folding in the endoplasmic reticulum. Required to retain ERO1A and ERO1B in the endoplasmic reticulum (406 aa)
TP53Cellular tumor antigen p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in [...] (393 aa)
RNF7RING-box protein 2; Probable component of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins involved in cell cycle progression, signal transduction and transcription. CRLs complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins, ARIH1 mediating addition of the first ubiquitin on CRLs targets (By similarity). Through the RING-type zinc finger, seems to recruit the E2 ubiquitination enzyme to the complex and brings it into close proximity to the substrate [...] (113 aa)
UBE2Q1Ubiquitin-conjugating enzyme E2 Q1; Catalyzes the covalent attachment of ubiquitin to other proteins. May be involved in hormonal homeostasis in females. Involved in regulation of B4GALT1 cell surface expression, B4GALT1-mediated cell adhesion to laminin and embryoid body formation (By similarity); Ubiquitin conjugating enzymes E2 (422 aa)
B4GALT6Beta-1,4-galactosyltransferase 6; Required for the biosynthesis of glycosphingolipids; Beta 4-glycosyltransferases (382 aa)
B4GALT2Beta-1,4-galactosyltransferase 2; Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids. Can produce lactose; Beta 4-glycosyltransferases (401 aa)
UBA6Ubiquitin-like modifier-activating enzyme 6; Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin- E1 thioester and free AMP. Specific for ubiquitin, does not activate ubiquitin-like peptides. Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Required for UBD/FAT10 conjugation. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesi [...] (1052 aa)
UBA7Ubiquitin-like modifier-activating enzyme 7; Activates ubiquitin by first adenylating with ATP its C- terminal glycine residue and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin- E1 thioester and free AMP. Catalyzes the ISGylation of influenza A virus NS1 protein; Ubiquitin like modifier activating enzymes (1012 aa)
UBA1Ubiquitin-like modifier-activating enzyme 1; Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin- proteasome system. Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP. Essential for the formation of radiation- induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (1058 aa)
ATG7Ubiquitin-like modifier-activating enzyme ATG7; E1-like activating enzyme involved in the 2 ubiquitin- like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 as well as the ATG8 family proteins for their conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Required for autophagic death induced by caspase-8 inhibition. Required for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondri [...] (703 aa)
UBA5Ubiquitin-like modifier-activating enzyme 5; E1-like enzyme which activates UFM1 and SUMO2; Ubiquitin like modifier activating enzymes (404 aa)
UBA3NEDD8-activating enzyme E1 catalytic subunit; Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression (463 aa)
B4GALT5Beta-1,4-galactosyltransferase 5; Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Beta 4-glycosyltransferases (388 aa)
B4GALT1Beta-1,4-galactosyltransferase 1; The Golgi complex form catalyzes the production of lactose in the lactating mammary gland and could also be responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Beta 4-glycosyltransferases (398 aa)
C1QTNF2Complement C1q tumor necrosis factor-related protein 2; C1q and TNF related 2 (330 aa)
B4GALT4Beta-1,4-galactosyltransferase 4; Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Belongs to the glycosyltransferase 7 family (344 aa)
GPR161G-protein coupled receptor 161; Key negative regulator of Shh signaling, which promotes the processing of GLI3 into GLI3R during neural tube development. Recruited by TULP3 and the IFT-A complex to primary cilia and acts as a regulator of the PKA-dependent basal repression machinery in Shh signaling by increasing cAMP levels, leading to promote the PKA-dependent processing of GLI3 into GLI3R and repress the Shh signaling. In presence of SHH, it is removed from primary cilia and is internalized into recycling endosomes, preventing its activity and allowing activation of the Shh signalin [...] (549 aa)
MFSD11UNC93-like protein MFSD11; Major facilitator superfamily domain containing 11; Belongs to the unc-93 family (449 aa)
B4GALT3Beta-1,4-galactosyltransferase 3; Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Beta 4-glycosyltransferases (393 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]