• Version:
  • 11.0 [archived version]
STRINGSTRING
NT5E NT5E CANT1 CANT1 NT5C3A NT5C3A ENTPD5 ENTPD5 NT5C NT5C ENTPD6 ENTPD6 ENTPD8 ENTPD8 HPRT1 HPRT1 PDE6G PDE6G ENTPD4 ENTPD4 NT5C3B NT5C3B NT5C2 NT5C2 NT5C1A NT5C1A ITPA ITPA ENTPD3 ENTPD3 NT5M NT5M NT5C1B NT5C1B ENTPD1 ENTPD1 ENSG00000250741 ENSG00000250741 APRT APRT PDE9A PDE9A GMPS GMPS TRIM32 TRIM32 TFAP4 TFAP4 PRKG2 PRKG2 RSPRY1 RSPRY1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TFAP4Transcription factor AP-4; Transcription factor that activates both viral and cellular genes by binding to the symmetrical DNA sequence 5’- CAGCTG-3’; Basic helix-loop-helix proteins (338 aa)
NT5C1ACytosolic 5’-nucleotidase 1A; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia; 5’-nucleotidases (368 aa)
NT5C5’(3’)-deoxyribonucleotidase, cytosolic type; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP; Belongs to the 5’(3’)-deoxyribonucleotidase family (201 aa)
NT5E5’-nucleotidase; Hydrolyzes extracellular nucleotides into membrane permeable nucleosides. Exhibits AMP-, NAD-, and NMN-nucleosidase activities; Belongs to the 5’-nucleotidase family (574 aa)
PRKG2cGMP-dependent protein kinase 2; Crucial regulator of intestinal secretion and bone growth (By similarity). Phosphorylates and activates CFTR on the plasma membrane. Plays a key role in intestinal secretion by regulating cGMP-dependent translocation of CFTR in jejunum (By similarity). Acts downstream of NMDAR to activate the plasma membrane accumulation of GRIA1/GLUR1 in synapse and increase synaptic plasticity. Phosphorylates GRIA1/GLUR1 at Ser-863 (By similarity). Acts as regulator of gene expression and activator of the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK [...] (762 aa)
PDE9AHigh affinity cGMP-specific 3’,5’-cyclic phosphodiesterase 9A; Specifically hydrolyzes the second messenger cGMP, which is a key regulator of many important physiological processes. Highly specific- compared to other members of the cyclic nucleotide phosphodiesterase family, has the highest affinity and selectivity for cGMP. Specifically regulates natriuretic-peptide- dependent cGMP signaling in heart, acting as a regulator of cardiac hypertrophy in myocytes and muscle. Does not regulate nitric oxide-dependent cGMP in heart. Additional experiments are required to confirm whether its ab [...] (593 aa)
HPRT1Hypoxanthine-guanine phosphoribosyltransferase; Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5- phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (218 aa)
ENTPD3Ectonucleoside triphosphate diphosphohydrolase 3; Has a threefold preference for the hydrolysis of ATP over ADP (529 aa)
CANT1Soluble calcium-activated nucleotidase 1; Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis (401 aa)
PDE6GRetinal rod rhodopsin-sensitive cGMP 3’,5’-cyclic phosphodiesterase subunit gamma; Participates in processes of transmission and amplification of the visual signal. cGMP-PDEs are the effector molecules in G-protein-mediated phototransduction in vertebrate rods and cones; Phosphodiesterases (87 aa)
ENTPD5Ectonucleoside triphosphate diphosphohydrolase 5; Uridine diphosphatase (UDPase) that promotes protein N- glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. The nucleotide hydrolyzing preference is GDP > IDP > UDP, but not any other nucleoside di-, mono- or triphosphates, nor thia [...] (428 aa)
NT5C2Cytosolic purine 5’-nucleotidase; May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5’-monophosphate (IMP) and other purine nucleotides; 5’-nucleotidases (561 aa)
ENTPD4Ectonucleoside triphosphate diphosphohydrolase 4; Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent. The order of activity with different substrates is UDP >> GDP = CDP = TDP, AMP, ADP, ATP and UMP are not substrates. Preferred substrates for isoform 2 are CTP, UDP, CDP, GTP and GDP, while isoform 1 utilizes UTP and TTP; Belongs to the GDA1/CD39 NTPase family (616 aa)
NT5C1BCytosolic 5’-nucleotidase 1B; Dephosphorylates the 5’ and 2’(3’)-phosphates of deoxyribonucleotides. Helps to regulate adenosine levels (By similarity); 5’-nucleotidases (610 aa)
ENTPD1Ectonucleoside triphosphate diphosphohydrolase 1; In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well; Belongs to the GDA1/CD39 NTPase family (522 aa)
ENTPD8Ectonucleoside triphosphate diphosphohydrolase 8; Canalicular ectonucleoside NTPDase responsible for the main hepatic NTPDase activity. Ectonucleoside NTPDases catalyze the hydrolysis of gamma- and beta-phosphate residues of nucleotides, playing a central role in concentration of extracellular nucleotides. Has activity toward ATP, ADP, UTP and UDP, but not toward AMP (495 aa)
ENTPD6Ectonucleoside triphosphate diphosphohydrolase 6; Might support glycosylation reactions in the Golgi apparatus and, when released from cells, might catalyze the hydrolysis of extracellular nucleotides. Hydrolyzes preferentially nucleoside 5’-diphosphates, nucleoside 5’-triphosphates are hydrolyzed only to a minor extent, there is no hydrolysis of nucleoside 5’-monophosphates. The order of activity with different substrates is GDP > IDP >> UDP = CDP >> ADP (By similarity); Belongs to the GDA1/CD39 NTPase family (484 aa)
APRTAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis (180 aa)
ITPAInosine triphosphate pyrophosphatase; Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2’-deoxy-N-6-hydroxylaminopurine triposphate (dHAPTP) and xanthosine 5’-triphosphate (XTP) to their respective monophosphate derivatives. The enzyme does not distinguish between the deoxy- and ribose forms. Probably excludes non-canonical purines from RNA and DNA precursor pools, thus preventing their incorporation into RNA and DNA and avoiding chromosomal lesions (194 aa)
NT5M5’(3’)-deoxyribonucleotidase, mitochondrial; Dephosphorylates specifically the 5’ and 2’(3’)- phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP; 5’-nucleotidases (228 aa)
NT5C3B7-methylguanosine phosphate-specific 5’-nucleotidase; Specifically hydrolyzes 7-methylguanosine monophosphate (m(7)GMP) to 7-methylguanosine and inorganic phosphate. The specific activity for m(7)GMP may protect cells against undesired salvage of m(7)GMP and its incorporation into nucleic acids. Also has weak activity for CMP. UMP and purine nucleotides are poor substrates (300 aa)
TRIM32E3 ubiquitin-protein ligase TRIM32; Has an E3 ubiquitin ligase activity. Ubiquitinates DTNBP1 (dysbindin) and promotes its degradation. May ubiquitinate BBS2. May play a significant role in mediating the biological activity of the HIV-1 Tat protein in vivo. Binds specifically to the activation domain of HIV-1 Tat and can also interact with the HIV-2 and EIAV Tat proteins in vivo; Belongs to the TRIM/RBCC family (653 aa)
GMPSGMP synthase [glutamine-hydrolyzing]; Involved in the de novo synthesis of guanine nucleotides which are not only essential for DNA and RNA synthesis, but also provide GTP, which is involved in a number of cellular processes important for cell division; Glutamine amidotransferase like class 1 domain containing (693 aa)
ENSG00000250741NT5C1B-RDH14 readthrough (602 aa)
RSPRY1Ring finger and SPRY domain containing 1 (576 aa)
NT5C3ACytosolic 5’-nucleotidase 3A; Nucleotidase which shows specific activity towards cytidine monophosphate (CMP) and 7-methylguanosine monophosphate (m(7)GMP). CMP seems to be the preferred substrate; Belongs to the pyrimidine 5’-nucleotidase family (336 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]