• Version:
  • 11.0 [archived version]
STRINGSTRING
MYH2 MYH2 CPT2 CPT2 NDUFS3 NDUFS3 NDUFS5 NDUFS5 OGDH OGDH NDUFA2 NDUFA2 NDUFA12 NDUFA12 NDUFB7 NDUFB7 TMEM98 TMEM98 NDUFA8 NDUFA8 UQCRB UQCRB GABBR2 GABBR2 GPR156 GPR156 ATP1B3 ATP1B3 GABBR1 GABBR1 FXYD2 FXYD2 ATP12A ATP12A ATP6V1E1 ATP6V1E1 ATP1A1 ATP1A1 ATP1A3 ATP1A3 QARS QARS RS1 RS1 ITGA5 ITGA5 RTN4 RTN4 RTN3 RTN3 ANP32B ANP32B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NDUFB7NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (137 aa)
ATP12APotassium-transporting ATPase alpha chain 2; Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for potassium absorption in various tissues; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1045 aa)
OGDH2-oxoglutarate dehydrogenase, mitochondrial; The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components- 2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (1023 aa)
MYH2Myosin-2; Muscle contraction. Required for cytoskeleton organization (By similarity); Myosin heavy chains (1941 aa)
NDUFA2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (99 aa)
ATP6V1E1V-type proton ATPase subunit E 1; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells; V-type ATPases (226 aa)
GABBR2Gamma-aminobutyric acid type B receptor subunit 2; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-depend [...] (941 aa)
NDUFS3NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (264 aa)
ATP1B3Sodium/potassium-transporting ATPase subunit beta-3; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known; ATPase Na+/K+ transporting subunits (279 aa)
FXYD2Sodium/potassium-transporting ATPase subunit gamma; May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase; Belongs to the FXYD family (66 aa)
ITGA5Integrin alpha-5; Integrin alpha-5/beta-1 is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5-ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1. ITGA5-ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1; CD molecules (1049 aa)
QARSGlutamine--tRNA ligase; Glutamine--tRNA ligase. Plays a critical role in brain development; Belongs to the class-I aminoacyl-tRNA synthetase family (775 aa)
NDUFA12NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (145 aa)
RTN4Reticulon-4; Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS. Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Isoform 2 reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to thei [...] (1192 aa)
ANP32BAcidic leucine-rich nuclear phosphoprotein 32 family member B; Multifunctional protein working as a cell cycle progression factor as well as a cell survival factor. Required for the progression from the G1 to the S phase. Anti-apoptotic protein which functions as a caspase-3 inhibitor. Has no phosphatase 2A (PP2A) inhibitor activity (By similarity). Exhibits histone chaperone properties, stimulating core histones to assemble into a nucleosome; ANP32 acidic nuclear phosphoproteins (251 aa)
CPT2Carnitine O-palmitoyltransferase 2, mitochondrial; Carnitine palmitoyltransferase 2 (658 aa)
NDUFS5NADH dehydrogenase [ubiquinone] iron-sulfur protein 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (106 aa)
NDUFA8NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (172 aa)
GABBR1Gamma-aminobutyric acid type B receptor subunit 1; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-depend [...] (961 aa)
RTN3Reticulon-3; May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. In case of enteroviruses infection, RTN3 may be involved in the viral replication or pathogenesis. Induces the formation of endoplasmic reticulum tubules (1032 aa)
RS1Retinoschisin; Binds negatively charged membrane lipids, such as phosphatidylserine and phosphoinositides (By similarity). May play a role in cell-cell adhesion processes in the retina, via homomeric interaction between octamers present on the surface of two neighboring cells. Required for normal structure and function of the retina (224 aa)
GPR156Probable G-protein coupled receptor 156; Orphan receptor; Belongs to the G-protein coupled receptor 3 family. GABA-B receptor subfamily (814 aa)
UQCRBCytochrome b-c1 complex subunit 7; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping; Belongs to the UQCRB/QCR7 family (140 aa)
ATP1A3Sodium/potassium-transporting ATPase subunit alpha-3; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily (1026 aa)
ATP1A1Sodium/potassium-transporting ATPase subunit alpha-1; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients; ATPase Na+/K+ transporting subunits (1023 aa)
TMEM98Transmembrane protein 98 (226 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]