• Version:
  • 11.0 [archived version]
STRINGSTRING
HSPA1L HSPA1L MMGT1 MMGT1 MRPL1 MRPL1 ACAD9 ACAD9 NDUFS4 NDUFS4 NDUFS2 NDUFS2 LMAN1 LMAN1 COX5B COX5B SDHB SDHB DLST DLST CYC1 CYC1 DLAT DLAT DLD DLD LEO1 LEO1 OGDH OGDH PDHA2 PDHA2 CS CS PDHB PDHB PDHX PDHX SLC2A13 SLC2A13 PITRM1 PITRM1 PDHA1 PDHA1 PDK3 PDK3 FOXD4 FOXD4 SYNCRIP SYNCRIP ATP1B1 ATP1B1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DLDDihydrolipoyl dehydrogenase, mitochondrial; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as an E3 component of three alpha-ketoacid dehydrogenase complexes (pyruvate-, alpha-ketoglutarate-, and branched-chain amino acid-dehydrogenase complex). In monomeric form has additional moonlighting function as serine protease. Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction (By similarity) (509 aa)
OGDH2-oxoglutarate dehydrogenase, mitochondrial; The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of three enzymatic components- 2- oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (1023 aa)
PDHXPyruvate dehydrogenase protein X component, mitochondrial; Required for anchoring dihydrolipoamide dehydrogenase (E3) to the dihydrolipoamide transacetylase (E2) core of the pyruvate dehydrogenase complexes of eukaryotes. This specific binding is essential for a functional PDH complex (501 aa)
LMAN1Protein ERGIC-53; Mannose-specific lectin. May recognize sugar residues of glycoproteins, glycolipids, or glycosylphosphatidyl inositol anchors and may be involved in the sorting or recycling of proteins, lipids, or both. The LMAN1-MCFD2 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins (510 aa)
COX5BCytochrome c oxidase subunit 5B, mitochondrial; This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (129 aa)
DLATDihydrolipoamide S-acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (647 aa)
SLC2A13Proton myo-inositol cotransporter; H(+)-myo-inositol cotransporter. Can also transport related stereoisomers; Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family (648 aa)
PDHA2Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (388 aa)
NDUFS4NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (175 aa)
LEO1RNA polymerase-associated protein LEO1; Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non- phosphorylated and ’Ser-2’- and ’Ser-5’-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox [...] (666 aa)
MMGT1Membrane magnesium transporter 1; Mediates Mg(2+) transport; Belongs to the membrane magnesium transporter (TC 1.A.67) family (131 aa)
PDHBPyruvate dehydrogenase E1 component subunit beta, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (359 aa)
ACAD9Acyl-CoA dehydrogenase family member 9, mitochondrial; Required for mitochondrial complex I assembly. Has a dehydrogenase activity on palmitoyl-CoA (C16-0) and stearoyl-CoA (C18-0). It is three times more active on palmitoyl-CoA than on stearoyl-CoA. However, it does not play a primary role in long-chain fatty acid oxidation in vivo. Has little activity on octanoyl-CoA (C8-0), butyryl-CoA (C4-0) or isovaleryl-CoA (5-0); Belongs to the acyl-CoA dehydrogenase family (621 aa)
MRPL1Mitochondrial ribosomal protein L1 (325 aa)
CYC1Cytochrome c1, heme protein, mitochondrial; This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain; Apoptosome (325 aa)
DLSTDihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate complex); The 2-oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). It contains multiple copies of 3 enzymatic components- 2-oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) (453 aa)
CSCitrate synthase, mitochondrial; Citrate synthase (466 aa)
ATP1B1Sodium/potassium-transporting ATPase subunit beta-1; This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane; ATPase Na+/K+ transporting subunits (303 aa)
NDUFS2NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (463 aa)
SYNCRIPHeterogeneous nuclear ribonucleoprotein Q; Heterogenous nuclear ribonucleoprotein (hnRNP) implicated in mRNA processing mechanisms. Component of the CRD- mediated complex that promotes MYC mRNA stability. Isoform 1, isoform 2 and isoform 3 are associated in vitro with pre-mRNA, splicing intermediates and mature mRNA protein complexes. Isoform 1 binds to apoB mRNA AU-rich sequences. Isoform 1 is part of the APOB mRNA editosome complex and may modulate the postranscriptional C to U RNA-editing of the APOB mRNA through either by binding to A1CF (APOBEC1 complementation factor), to APOBEC1 [...] (623 aa)
SDHBSuccinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (280 aa)
HSPA1LHeat shock 70 kDa protein 1-like; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis an [...] (641 aa)
PDHA1Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links the glycolytic pathway to the tricarboxylic cycle (428 aa)
PITRM1Presequence protease, mitochondrial; ATP-independent protease that degrades mitochondrial transit peptides after their cleavage. Also degrades other unstructured peptides. Specific for peptides in the range of 10 to 65 residues. Able to degrade amyloid beta A4 (APP) protein when it accumulates in mitochondrion, suggesting a link with Alzheimer disease. Shows a preference for cleavage after small polar residues and before basic residues, but without any positional preference; Belongs to the peptidase M16 family. PreP subfamily (1038 aa)
FOXD4Forkhead box D4 (439 aa)
PDK3[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial; Inhibits pyruvate dehydrogenase activity by phosphorylation of the E1 subunit PDHA1, and thereby regulates glucose metabolism and aerobic respiration. Can also phosphorylate PDHA2. Decreases glucose utilization and increases fat metabolism in response to prolonged fasting, and as adaptation to a high-fat diet. Plays a role in glucose homeostasis and in maintaining normal blood glucose levels in function of nutrient levels and under starvation. Plays a role in the generation of reactive oxygen species (415 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]