• Version:
  • 11.0 [archived version]
STRINGSTRING
MFAP1 MFAP1 SF3A2 SF3A2 SNRPF SNRPF CWC15 CWC15 SNRPA1 SNRPA1 SF3B4 SF3B4 SF3B1 SF3B1 PHF5A PHF5A SNRPN SNRPN SF3B2 SF3B2 PRPF6 PRPF6 TCERG1 TCERG1 SNRPG SNRPG SF3B6 SF3B6 DHX16 DHX16 SF3A1 SF3A1 SNRPB2 SNRPB2 CDC40 CDC40 CDC5L CDC5L EFTUD2 EFTUD2 SF3B3 SF3B3 SF3B5 SF3B5 SNRPE SNRPE PRPF19 PRPF19 SART1 SART1 PRPF8 PRPF8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SF3A1Splicing factor 3A subunit 1; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; U2 small nucleolar ribonucleoprotein (793 aa)
PHF5APHD finger-like domain-containing protein 5A; Involved with the PAF1 complex (PAF1C) in transcriptional elongation by RNA polymerase II, and in regulation of development and maintenance of embryonic stem cell (ESC) pluripotency. Required for maintenance of ESCs self-renewal and cellular reprogramming of stem cells. Maintains pluripotency by recruiting and stabilizing PAF1C on pluripotency genes loci, and by regulating the expression of the pluripotency genes. Regulates the deposition of elongation-associated histone modifications, including dimethylated histone H3 ’Lys-79’ (H3K79me2) a [...] (110 aa)
SF3A2Splicing factor 3A subunit 2; Subunit of the splicing factor SF3A required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex; Belongs to the SF3A2 family (464 aa)
PRPF19Pre-mRNA-processing factor 19; Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates ’Lys-63’-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex. Recruite [...] (504 aa)
SF3B6Splicing factor 3B subunit 6; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch si [...] (125 aa)
SNRPB2U2 small nuclear ribonucleoprotein B’; Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A’ protein; RNA binding motif containing (225 aa)
SNRPA1U2 small nuclear ribonucleoprotein A; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA; Belongs to the U2 small nuclear ribonucleoprotein A family (255 aa)
PRPF6Pre-mRNA-processing factor 6; Involved in pre-mRNA splicing as component of the U4/U6- U5 tri-snRNP complex, one of the building blocks of the spliceosome. Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation; U5 small nucleolar ribonucleoprotein (941 aa)
SNRPFSmall nuclear ribonucleoprotein F; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (86 aa)
MFAP1Microfibrillar-associated protein 1; May be required for pre-mRNA splicing; Spliceosomal B complex (439 aa)
SF3B4Splicing factor 3B subunit 4; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. SF3B4 has been found in complex ’B’ and ’C’ as well. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class [...] (424 aa)
SNRPGSmall nuclear ribonucleoprotein G; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing (76 aa)
TCERG1Transcription elongation regulator 1; Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter (1098 aa)
SF3B3Splicing factor 3B subunit 3; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1217 aa)
SART1U4/U6.U5 tri-snRNP-associated protein 1; Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA; Belongs to the SNU66/SART1 family (800 aa)
SF3B2Splicing factor 3B subunit 2; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron; Armadillo-like helical d [...] (895 aa)
SF3B1Splicing factor 3B subunit 1; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron; Armadillo-like helical d [...] (1304 aa)
SF3B5Splicing factor 3B subunit 5; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (86 aa)
CDC40Pre-mRNA-processing factor 17; Associates with the spliceosome late in the splicing pathway and may function in the second step of pre-mRNA splicing; Spliceosomal Bact complex (579 aa)
CDC5LCell division cycle 5-like protein; DNA-binding protein involved in cell cycle control. May act as a transcription activator. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR); Myb/SANT domain containing (802 aa)
DHX16Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16; Probable ATP-binding RNA helicase involved in pre-mRNA splicing; Belongs to the DEAD box helicase family. DEAH subfamily. DDX16/PRP8 sub-subfamily (1041 aa)
SNRPNSmall nuclear ribonucleoprotein-associated protein N; May be involved in tissue-specific alternative RNA processing events; Sm spliceosomal proteins (240 aa)
EFTUD2116 kDa U5 small nuclear ribonucleoprotein component; Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily (972 aa)
SNRPESmall nuclear ribonucleoprotein E; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing. May indirectly play a role in hair development (92 aa)
PRPF8Pre-mRNA-processing-splicing factor 8; Functions as a scaffold that mediates the ordered assembly of spliceosomal proteins and snRNAs. Required for the assembly of the U4/U6-U5 tri-snRNP complex. Functions as scaffold that positions spliceosomal U2, U5 and U6 snRNAs at splice sites on pre-mRNA substrates, so that splicing can occur. Interacts with both the 5’ and the 3’ splice site (2335 aa)
CWC15Spliceosome-associated protein CWC15 homolog; Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing (229 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]