• Version:
  • 11.0 [archived version]
STRINGSTRING
LSM5 LSM5 PQBP1 PQBP1 SNRPF SNRPF PRPF6 PRPF6 PRPF38A PRPF38A PPIH PPIH TXNL4A TXNL4A SNRNP40 SNRNP40 SF3B3 SF3B3 PHF5A PHF5A SF3B5 SF3B5 SNRPD3 SNRPD3 SNRPD2 SNRPD2 SNRPG SNRPG SNRPA1 SNRPA1 SNRPD1 SNRPD1 LSM7 LSM7 PRPF3 PRPF3 LSM3 LSM3 SF3B1 SF3B1 LSM2 LSM2 DDX23 DDX23 NHP2L1 NHP2L1 LSM8 LSM8 SNRPE SNRPE CD2BP2 CD2BP2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SNRPD3Small nuclear ribonucleoprotein Sm D3; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (126 aa)
PHF5APHD finger-like domain-containing protein 5A; Involved with the PAF1 complex (PAF1C) in transcriptional elongation by RNA polymerase II, and in regulation of development and maintenance of embryonic stem cell (ESC) pluripotency. Required for maintenance of ESCs self-renewal and cellular reprogramming of stem cells. Maintains pluripotency by recruiting and stabilizing PAF1C on pluripotency genes loci, and by regulating the expression of the pluripotency genes. Regulates the deposition of elongation-associated histone modifications, including dimethylated histone H3 ’Lys-79’ (H3K79me2) a [...] (110 aa)
PQBP1Polyglutamine-binding protein 1; Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development. Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species. May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery. May be involved in ATXN1 mutant-in [...] (265 aa)
LSM8U6 snRNA-associated Sm-like protein LSm8; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (96 aa)
LSM7U6 snRNA-associated Sm-like protein LSm7; Binds specifically to the 3’-terminal U-tract of U6 snRNA and is probably a component of the spliceosome; Belongs to the snRNP Sm proteins family (103 aa)
SNRPA1U2 small nuclear ribonucleoprotein A; This protein is associated with sn-RNP U2. It helps the A’ protein to bind stem loop IV of U2 snRNA; Belongs to the U2 small nuclear ribonucleoprotein A family (255 aa)
PRPF38APre-mRNA-splicing factor 38A; May be required for pre-mRNA splicing; Belongs to the PRP38 family (312 aa)
SNRNP40U5 small nuclear ribonucleoprotein 40 kDa protein; Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs; Spliceosomal Bact complex (357 aa)
PRPF6Pre-mRNA-processing factor 6; Involved in pre-mRNA splicing as component of the U4/U6- U5 tri-snRNP complex, one of the building blocks of the spliceosome. Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation; U5 small nucleolar ribonucleoprotein (941 aa)
SNRPFSmall nuclear ribonucleoprotein F; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing (86 aa)
TXNL4AThioredoxin-like protein 4A; Essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes that are involved in spliceosome assembly; Belongs to the DIM1 family (142 aa)
SNRPGSmall nuclear ribonucleoprotein G; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. Appears to function in the U7 snRNP complex that is involved in histone 3’-end processing (76 aa)
SNRPD1Small nuclear ribonucleoprotein Sm D1; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP- snRNP interactions through nonspecific [...] (119 aa)
LSM3U6 snRNA-associated Sm-like protein LSm3; Binds specifically to the 3’-terminal U-tract of U6 snRNA; Belongs to the snRNP Sm proteins family (102 aa)
CD2BP2CD2 antigen cytoplasmic tail-binding protein 2; Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly; Protein phosphatase 1 regulatory subunits (341 aa)
SF3B3Splicing factor 3B subunit 3; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (1217 aa)
PPIHPeptidyl-prolyl cis-trans isomerase H; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Participates in pre-mRNA splicing. May play a role in the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome. May act as a chaperone; Cyclophilin peptidylprolyl isomerases (177 aa)
DDX23Probable ATP-dependent RNA helicase DDX23; Involved in pre-mRNA splicing and its phosphorylated form (by SRPK2) is required for spliceosomal B complex formation; DEAD-box helicases (820 aa)
PRPF3U4/U6 small nuclear ribonucleoprotein Prp3; Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome; U4/U6 small nucleolar ribonucleoprotein (683 aa)
SF3B1Splicing factor 3B subunit 1; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the ’E’ complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron; Armadillo-like helical d [...] (1304 aa)
SNRPD2Small nuclear ribonucleoprotein Sm D2; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (118 aa)
SF3B5Splicing factor 3B subunit 5; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for ’A’ complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (86 aa)
LSM2U6 snRNA-associated Sm-like protein LSm2; Binds specifically to the 3’-terminal U-tract of U6 snRNA. May be involved in pre-mRNA splicing; Belongs to the snRNP Sm proteins family (95 aa)
NHP2L1NHP2-like protein 1; Binds to the 5’-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding (128 aa)
SNRPESmall nuclear ribonucleoprotein E; Core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. As part of the U7 snRNP it is involved in histone 3’-end processing. May indirectly play a role in hair development (92 aa)
LSM5U6 snRNA-associated Sm-like protein LSm5; Plays a role in U6 snRNP assembly and function. Binds to the 3’ end of U6 snRNA, thereby facilitating formation of the spliceosomal U4/U6 duplex formation in vitro; LSm proteins (91 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]