• Version:
  • 11.0 [archived version]
STRINGSTRING
SUPT16H SUPT16H TWISTNB TWISTNB SUPT4H1 SUPT4H1 RRN3 RRN3 CCNH CCNH PRPF19 PRPF19 PAF1 PAF1 MNAT1 MNAT1 GTF2H5 GTF2H5 GTF2H2 GTF2H2 AQR AQR GTF2H1 GTF2H1 GTF2H4 GTF2H4 ERCC3 ERCC3 RPA3 RPA3 GTF2H3 GTF2H3 GTF2H2C GTF2H2C CDK7 CDK7 ERCC5 ERCC5 ERCC2 ERCC2 POLK POLK POLE2 POLE2 RBX1 RBX1 RFC2 RFC2 PIAS1 PIAS1 PARP2 PARP2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RFC2Replication factor C subunit 2; The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating cell nuclear antigen (PCNA) and activator 1. This subunit binds ATP (By similarity) (354 aa)
AQRIntron-binding protein aquarius; Intron-binding spliceosomal protein required to link pre-mRNA splicing and snoRNP (small nucleolar ribonucleoprotein) biogenesis. Plays a key role in position-dependent assembly of intron-encoded box C/D small snoRNP, splicing being required for snoRNP assembly. May act by helping the folding of the snoRNA sequence. Binds to intron of pre-mRNAs in a sequence-independent manner, contacting the region between snoRNA and the branchpoint of introns (40 nucleotides upstream of the branchpoint) during the late stages of splicing; Belongs to the CWF11 family (1485 aa)
RRN3RNA polymerase I-specific transcription initiation factor RRN3; Required for efficient transcription initiation by RNA polymerase I. Required for the formation of the competent preinitiation complex (PIC). Dissociates from pol I as a consequence of transcription. In vitro, cannot activate transcription in a subsequent transcription reaction (By similarity); Armadillo-like helical domain containing (651 aa)
RBX1E3 ubiquitin-protein ligase RBX1; E3 ubiquitin ligase component of multiple cullin-RING- based E3 ubiquitin-protein ligase (CRLs) complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins, including proteins involved in cell cycle progression, signal transduction, transcription and transcription- coupled nucleotide excision repair. CRLs complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins, ARIH1 mediating addition of the first ubiquitin on CRLs targets. The functional specificity of the E3 ubiquitin-protein li [...] (108 aa)
SUPT16HFACT complex subunit SPT16; Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment o [...] (1047 aa)
POLE2DNA polymerase epsilon subunit 2; Participates in DNA repair and in chromosomal DNA replication (527 aa)
PAF1RNA polymerase II-associated factor 1 homolog; Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non- phosphorylated and ’Ser-2’- and ’Ser-5’-phosphorylated forms and is involved in transcriptional elongation, acting both indepentently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription [...] (531 aa)
TWISTNBDNA-directed RNA polymerase I subunit RPA43; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters; Belongs to the eukaryotic RPA43 RNA polymerase subunit family (338 aa)
RPA3Replication protein A 14 kDa subunit; As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP [...] (121 aa)
SUPT4H1Transcription elongation factor SPT4; Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II. DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A. DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter. Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex. DSIF and NELF promote paus [...] (117 aa)
PRPF19Pre-mRNA-processing factor 19; Ubiquitin-protein ligase which is a core component of several complexes mainly involved pre-mRNA splicing and DNA repair. Core component of the PRP19C/Prp19 complex/NTC/Nineteen complex which is part of the spliceosome and participates in its assembly, its remodeling and is required for its activity. During assembly of the spliceosome, mediates ’Lys-63’-linked polyubiquitination of the U4 spliceosomal protein PRPF3. Ubiquitination of PRPF3 allows its recognition by the U5 component PRPF8 and stabilizes the U4/U5/U6 tri-snRNP spliceosomal complex. Recruite [...] (504 aa)
POLKDNA polymerase kappa; DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Depending on the context, it inserts the correct base, but causes frequent base transitions, transversions and frameshifts. Lacks 3’-5’ proofreading exonuclease activity. Forms a Schiff base with 5’-deoxyribose phosphate at abasic sites, but does not have lyase activity (870 aa)
PIAS1E3 SUMO-protein ligase PIAS1; Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway. In vitro, binds A/T-rich DNA. The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context. Together with PRMT1, may repress STAT1 transcriptional activity, in th [...] (651 aa)
PARP2Poly [ADP-ribose] polymerase 2; Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates serine ADP-ribosylation of target proteins following interaction with HPF1; HPF1 conferring serine specificity; Poly(ADP-ribose) polymerases (583 aa)
CDK7Cyclin-dependent kinase 7; Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription. Cyclin- dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating [...] (346 aa)
CCNHCyclin-H; Regulates CDK7, the catalytic subunit of the CDK- activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. Its expression and activity are constant throughout [...] (323 aa)
GTF2H4General transcription factor IIH subunit 4; Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II; General transcription factors (462 aa)
MNAT1CDK-activating kinase assembly factor MAT1; Stabilizes the cyclin H-CDK7 complex to form a functional CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II; Nucleo [...] (309 aa)
GTF2H1General transcription factor IIH subunit 1; Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II; General transcription factors (548 aa)
ERCC3TFIIH basal transcription factor complex helicase XPB subunit; ATP-dependent 3’-5’ DNA helicase, component of the core- TFIIH basal transcription factor, involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Acts by opening DNA either around the RNA transcription start site or the DNA damage (782 aa)
GTF2H2General transcription factor IIH subunit 2; Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. The N-terminus interacts with and regulates XPD whereas an intact C- terminus is required for a successful escape of RNAP II form the promoter; Belongs to the GTF2H2 family (395 aa)
ERCC5DNA repair protein complementing XP-G cells; Single-stranded structure-specific DNA endonuclease involved in DNA excision repair. Makes the 3’incision in DNA nucleotide excision repair (NER). Acts as a cofactor for a DNA glycosylase that removes oxidized pyrimidines from DNA. May also be involved in transcription-coupled repair of this kind of damage, in transcription by RNA polymerase II, and perhaps in other processes too; Belongs to the XPG/RAD2 endonuclease family. XPG subfamily (1186 aa)
ERCC2TFIIH basal transcription factor complex helicase XPD subunit; ATP-dependent 5’-3’ DNA helicase, component of the core- TFIIH basal transcription factor. Involved in nucleotide excision repair (NER) of DNA by opening DNA around the damage, and in RNA transcription by RNA polymerase II by anchoring the CDK-activating kinase (CAK) complex, composed of CDK7, cyclin H and MAT1, to the core-TFIIH complex. Involved in the regulation of vitamin-D receptor activity. As part of the mitotic spindle-associated MMXD complex it plays a role in chromosome segregation. Might have a role in aging proc [...] (760 aa)
GTF2H2CGeneral transcription factor IIH subunit 2-like protein; Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II (395 aa)
GTF2H3General transcription factor IIH subunit 3; Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Anchors XPB; General transcription factors (308 aa)
GTF2H5General transcription factor IIH subunit 5; Component of the TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Necessary for the stability of the TFIIH complex and for the presence of normal levels of TFIIH in the cell; General transcription factors (71 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]