• Version:
  • 11.0 [archived version]
STRINGSTRING
NDUFAF4 NDUFAF4 NDUFB7 NDUFB7 FOXRED1 FOXRED1 NDUFAF1 NDUFAF1 NDUFA10 NDUFA10 NDUFA2 NDUFA2 NDUFB5 NDUFB5 NDUFB4 NDUFB4 NDUFB3 NDUFB3 NDUFS3 NDUFS3 NDUFS5 NDUFS5 NDUFAF7 NDUFAF7 HSPA2 HSPA2 ACAD9 ACAD9 NDUFS7 NDUFS7 NDUFA4 NDUFA4 MTIF2 MTIF2 MINPP1 MINPP1 MCCC1 MCCC1 SUGCT SUGCT NARS2 NARS2 HCFC1 HCFC1 RTN4IP1 RTN4IP1 LONP1 LONP1 EXOSC10 EXOSC10 CLPX CLPX
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NDUFAF7Protein arginine methyltransferase NDUFAF7, mitochondrial; Arginine methyltransferase involved in the assembly or stability of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). Acts by mediating symmetric dimethylation of ’Arg-118’ of NDUFS2 after it assembles into the complex I, stabilizing the early intermediate complex; Belongs to the NDUFAF7 family (441 aa)
NDUFB4NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (129 aa)
NDUFB7NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (137 aa)
NDUFS7NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (213 aa)
NDUFB3NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (98 aa)
NDUFA2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (99 aa)
NDUFA10NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone; NADH-ubiquinone oxidoreductase supernumerary subunits (355 aa)
NDUFB5NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (189 aa)
NDUFAF1Complex I intermediate-associated protein 30, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH-ubiquinone oxidoreductase complex (complex I); Belongs to the CIA30 family (327 aa)
FOXRED1FAD-dependent oxidoreductase domain-containing protein 1; Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). Involved in mid-late stages of complex I assembly (486 aa)
MTIF2Translation initiation factor IF-2, mitochondrial; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily (727 aa)
NDUFS3NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity); NADH-ubiquinone oxidoreductase core subunits (264 aa)
MCCC1Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial; Biotin-attachment subunit of the 3-methylcrotonyl-CoA carboxylase, an enzyme that catalyzes the conversion of 3- methylcrotonyl-CoA to 3-methylglutaconyl-CoA, a critical step for leucine and isovaleric acid catabolism (725 aa)
NARS2Probable asparagine--tRNA ligase, mitochondrial; asparaginyl-tRNA synthetase 2, mitochondrial; Belongs to the class-II aminoacyl-tRNA synthetase family (477 aa)
CLPXATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial; ATP-dependent specificity component of the Clp protease complex. Hydrolyzes ATP. Targets specific substrates for degradation by the Clp complex. Can perform chaperone functions in the absence of CLPP. Enhances the DNA-binding activity of TFAM and is required for maintaining a normal mitochondrial nucleoid structure. ATP- dependent unfoldase that stimulates the incorporation of the pyridoxal phosphate cofactor into 5-aminolevulinate synthase, thereby activating 5-aminolevulinate (ALA) synthesis, the first step in h [...] (633 aa)
HCFC1Host cell factor 1; Involved in control of the cell cycle. Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300. Coactivator for EGR2 and GABP2. Tethers the chromatin modifying Set1/Ash2 histone H3 ’Lys-4’ methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. As part o [...] (2035 aa)
ACAD9Acyl-CoA dehydrogenase family member 9, mitochondrial; Required for mitochondrial complex I assembly. Has a dehydrogenase activity on palmitoyl-CoA (C16-0) and stearoyl-CoA (C18-0). It is three times more active on palmitoyl-CoA than on stearoyl-CoA. However, it does not play a primary role in long-chain fatty acid oxidation in vivo. Has little activity on octanoyl-CoA (C8-0), butyryl-CoA (C4-0) or isovaleryl-CoA (5-0); Belongs to the acyl-CoA dehydrogenase family (621 aa)
SUGCTSuccinate--hydroxymethylglutarate CoA-transferase; Catalyzes the succinyl-CoA-dependent conversion of glutarate to glutaryl-CoA. Can use different dicarboxylic acids as CoA acceptors, the preferred ones are glutarate, succinate, adipate, and 3-hydroxymethylglutarate; Belongs to the CaiB/BaiF CoA-transferase family (445 aa)
NDUFA4Cytochrome c oxidase subunit NDUFA4; Cytochrome c oxidase (COX, complex IV) is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. Required for complex IV maintenance (81 aa)
LONP1Lon protease homolog, mitochondrial; ATP-dependent serine protease that mediates the selective degradation of misfolded, unassembled or oxidatively damaged polypeptides as well as certain short-lived regulatory proteins in the mitochondrial matrix. May also have a chaperone function in the assembly of inner membrane protein complexes. Participates in the regulation of mitochondrial gene expression and in the maintenance of the integrity of the mitochondrial genome. Binds to mitochondrial promoters and RNA in a single- stranded, site-specific, and strand-specific manner. May regulate mi [...] (959 aa)
RTN4IP1Reticulon-4-interacting protein 1, mitochondrial; Plays a role in the regulation of retinal ganglion cell (RGC) neurite outgrowth, and hence in the development of the inner retina and optic nerve. Appears to be a potent inhibitor of regeneration following spinal cord injury (396 aa)
NDUFAF4NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4; Involved in the assembly of mitochondrial NADH-ubiquinone oxidoreductase complex (complex I). May be involved in cell proliferation and survival of hormone-dependent tumor cells. May be a regulator of breast tumor cell invasion (175 aa)
MINPP1Multiple inositol polyphosphate phosphatase 1; Acts as a phosphoinositide 5- and phosphoinositide 6- phosphatase and regulates cellular levels of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6). Also acts as a 2,3-bisphosphoglycerate 3-phosphatase, by mediating the dephosphorylation of 2,3-bisphosphoglycerate (2,3-BPG) to produce phospho-D-glycerate without formation of 3- phosphoglycerate. May play a role in bone development (endochondral ossification). May play a role in the transition of chondrocytes from proliferation to hypertrophy (By similarity); Belongs [...] (487 aa)
NDUFS5NADH dehydrogenase [ubiquinone] iron-sulfur protein 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (106 aa)
EXOSC10Exosome component 10; Putative catalytic component of the RNA exosome complex which has 3’->5’ exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding ’pervasive’ transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. [...] (885 aa)
HSPA2Heat shock-related 70 kDa protein 2; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis [...] (639 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (0%) [HD]