• Version:
  • 11.0 [archived version]
STRINGSTRING
ADCK5 ADCK5 ADCK4 ADCK4 COQ5 COQ5 COQ6 COQ6 ADCK3 ADCK3 COQ3 COQ3 COQ7 COQ7 SEC23IP SEC23IP COQ4 COQ4 COQ9 COQ9 DDHD2 DDHD2 SDHB SDHB DDHD1 DDHD1 COX5A COX5A PMPCB PMPCB PPM1K PPM1K SLC25A4 SLC25A4 UQCRC2 UQCRC2 COX6B1 COX6B1 FKBP8 FKBP8 SLC25A6 SLC25A6 FKBP6 FKBP6 PMPCA PMPCA FKBP4 FKBP4 HTATIP2 HTATIP2 FKBP5 FKBP5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
FKBP4Peptidyl-prolyl cis-trans isomerase FKBP4; Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Acts also as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role a [...] (459 aa)
COX6B1Cytochrome c oxidase subunit 6B1; Connects the two COX monomers into the physiological dimeric form; Mitochondrial complex IV- cytochrome c oxidase subunits (86 aa)
PMPCBMitochondrial-processing peptidase subunit beta; Cleaves presequences (transit peptides) from mitochondrial protein precursors; M16 metallopeptidases (489 aa)
FKBP6Inactive peptidyl-prolyl cis-trans isomerase FKBP6; Co-chaperone required during spermatogenesis to repress transposable elements and prevent their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and govern the methylation and subsequent repression of transposons. Acts as a co-chaperone via its interaction with HSP90 and is required for the piRNA amplification process, the secondary piRNA biogenesis. May be re [...] (327 aa)
COQ3Ubiquinone biosynthesis O-methyltransferase, mitochondrial; O-methyltransferase that catalyzes the 2 O-methylation steps in the ubiquinone biosynthetic pathway; Belongs to the class I-like SAM-binding methyltransferase superfamily. UbiG/COQ3 family (369 aa)
COQ9Ubiquinone biosynthesis protein COQ9, mitochondrial; Lipid-binding protein involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration. Binds a phospholipid of at least 10 carbons in each acyl group. May be required to present its bound-lipid to COQ7 (318 aa)
UQCRC2Cytochrome b-c1 complex subunit 2, mitochondrial; This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex; M16 metallopeptidases (453 aa)
SLC25A4ADP/ATP translocase 1; Involved in mitochondrial ADP/ATP transport. Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane; Belongs to the mitochondrial carrier (TC 2.A.29) family (298 aa)
COQ52-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial; Methyltransferase required for the conversion of 2- polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2); Seven-beta-strand methyltransferase motif containing (327 aa)
COQ4Ubiquinone biosynthesis protein COQ4 homolog, mitochondrial; Component of the coenzyme Q biosynthetic pathway. May play a role in organizing a multi-subunit COQ enzyme complex required for coenzyme Q biosynthesis. Required for steady-state levels of other COQ polypeptides (265 aa)
ADCK5Uncharacterized aarF domain-containing protein kinase 5; The function of this protein is not yet clear. It is not known if it has protein kinase activity and what type of substrate it would phosphorylate (Ser, Thr or Tyr) (580 aa)
ADCK4Atypical kinase COQ8B, mitochondrial; Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration. Its substrate specificity is unclear- does not show any protein kinase activity. Probably acts as a small molecule kinase, possibly a lipid kinase that phosphorylates a prenyl lipid in the ubiquinone biosynthesis pathway. Required for podocyte migration (544 aa)
COX5ACytochrome c oxidase subunit 5A, mitochondrial; This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport (150 aa)
COQ75-demethoxyubiquinone hydroxylase, mitochondrial; Catalyzes the hydroxylation of 2-polyprenyl-3-methyl-6- methoxy-1,4-benzoquinol (DMQH2) during ubiquinone biosynthesis. Has also a structural role in the COQ enzyme complex, stabilizing other COQ polypeptides. Involved in lifespan determination in a ubiquinone-independent manner; Belongs to the COQ7 family (217 aa)
DDHD1Phospholipase DDHD1; Phospholipase that hydrolyzes phosphatidic acid, including 1,2-dioleoyl-sn-phosphatidic acid. The different isoforms may change the substrate specificity; Belongs to the PA-PLA1 family (900 aa)
COQ6Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial; FAD-dependent monooxygenase required for the C5-ring hydroxylation during ubiquinone biosynthesis. Catalyzes the hydroxylation of 3-polyprenyl-4-hydroxybenzoic acid to 3- polyprenyl-4,5-dihydroxybenzoic acid. The electrons required for the hydroxylation reaction may be funneled indirectly from NADPH via a ferredoxin/ferredoxin reductase system to COQ6 (468 aa)
ADCK3Atypical kinase COQ8A, mitochondrial; Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration. Its substrate specificity is unclear- does not show any protein kinase activity. Probably acts as a small molecule kinase, possibly a lipid kinase that phosphorylates a prenyl lipid in the ubiquinone biosynthesis pathway, as suggested by its ability to bind coenzyme Q lipid intermediates. Shows an unusual selectivity for binding ADP over ATP (647 aa)
SEC23IPSEC23-interacting protein; Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P); Belongs to the PA-PLA1 family (1000 aa)
PMPCAMitochondrial-processing peptidase subunit alpha; Cleaves presequences (transit peptides) from mitochondrial protein precursors; Belongs to the peptidase M16 family (525 aa)
SDHBSuccinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q) (280 aa)
SLC25A6ADP/ATP translocase 3; Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis; Belongs to the mitochondrial carrier (TC 2.A.29) family (298 aa)
DDHD2Phospholipase DDHD2; Phospholipase that hydrolyzes preferentially phosphatidic acid, including 1,2-dioleoyl-sn-phosphatidic acid, and phosphatidylethanolamine. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4- phosphate (PI(4)P), phosphatidylinositol 5-phosphate (PI(5)P) and possibly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). May be involved in the maintenance of the endoplasmic reticulum and/or Golgi structures. May regulate the transport between Golgi apparatus and plasma membrane; Sterile alpha motif domain containing (711 aa)
HTATIP2Oxidoreductase HTATIP2; Oxidoreductase required for tumor suppression. NAPDH- bound form inhibits nuclear import by competing with nuclear import substrates for binding to a subset of nuclear transport receptors. May act as a redox sensor linked to transcription through regulation of nuclear import. Isoform 1 is a metastasis suppressor with proapoptotic as well as antiangiogenic properties. Isoform 2 has an antiapoptotic effect; Short chain dehydrogenase/reductase superfamily (276 aa)
FKBP5Peptidyl-prolyl cis-trans isomerase FKBP5; Immunophilin protein with PPIase and co-chaperone activities. Component of unligated steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). Plays a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors maintaining the complex into the cytoplasm when unliganded; FKBP prolyl isomerases (457 aa)
FKBP8Peptidyl-prolyl cis-trans isomerase FKBP8; Constitutively inactive PPiase, which becomes active when bound to calmodulin and calcium. Seems to act as a chaperone for BCL2, targets it to the mitochondria and modulates its phosphorylation state. The BCL2/FKBP8/calmodulin/calcium complex probably interferes with the binding of BCL2 to its targets. The active form of FKBP8 may therefore play a role in the regulation of apoptosis; FKBP prolyl isomerases (413 aa)
PPM1KProtein phosphatase 1K, mitochondrial; Regulates the mitochondrial permeability transition pore and is essential for cellular survival and development; Belongs to the PP2C family (372 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]