• Version:
  • 11.0 [archived version]
STRINGSTRING
LAMP1 LAMP1 MAPT MAPT EEA1 EEA1 MAP2 MAP2 PIKFYVE PIKFYVE CNTN2 CNTN2 DLG4 DLG4 FIG4 FIG4 ANK1 ANK1 GINS3 GINS3 NOS1 NOS1 LSM4 LSM4 VAC14 VAC14 AP1G1 AP1G1 PFAS PFAS PPIP5K1 PPIP5K1 PHKA1 PHKA1 DHODH DHODH PPIP5K2 PPIP5K2 CFD CFD ETF1 ETF1 CORO1B CORO1B CORO2A CORO2A CORO6 CORO6 CORO1C CORO1C CORO1A CORO1A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CORO1ACoronin-1A; May be a crucial component of the cytoskeleton of highly motile cells, functioning both in the invagination of large pieces of plasma membrane, as well as in forming protrusions of the plasma membrane involved in cell locomotion. In mycobacteria- infected cells, its retention on the phagosomal membrane prevents fusion between phagosomes and lysosomes; Belongs to the WD repeat coronin family (461 aa)
DHODHDihydroorotate dehydrogenase (quinone), mitochondrial; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor (395 aa)
FIG4Polyphosphoinositide phosphatase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide substrates in the order PtdIns(4,5)P2 > PtdIns(3,5)P2 > PtdIns(3,4,5)P3. Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes (907 aa)
VAC14Protein VAC14 homolog; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Acts as a positive activator of PIKfyve kinase activity. Also required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes; Belongs to the VAC14 family (782 aa)
PIKFYVE1-phosphatidylinositol 3-phosphate 5-kinase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Catalyzes the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo- inositol ring, to form phosphatidylinositol 3,5-bisphosphate. Required for endocytic-vacuolar pathway and nuclear migration. Plays a role in the biogenesis of endosome carrier vesicles (ECV)/ multivesicular bodies (MVB) transport intermediates from early endosomes; Zinc fingers FYVE-type (2098 aa)
ANK1Ankyrin-1; Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions (1897 aa)
PFASPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate (By similarity); In the N-terminal section; belongs to the FGAMS family (1338 aa)
EEA1Early endosome antigen 1; Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in endosomal trafficking; Zinc fingers FYVE-type (1411 aa)
CNTN2Contactin-2; In conjunction with another transmembrane protein, CNTNAP2, contributes to the organization of axonal domains at nodes of Ranvier by maintaining voltage-gated potassium channels at the juxtaparanodal region. May be involved in cell adhesion; Fibronectin type III domain containing (1040 aa)
CFDComplement factor D; Factor D cleaves factor B when the latter is complexed with factor C3b, activating the C3bbb complex, which then becomes the C3 convertase of the alternate pathway. Its function is homologous to that of C1s in the classical pathway; Belongs to the peptidase S1 family (253 aa)
LAMP1Lysosome-associated membrane glycoprotein 1; Presents carbohydrate ligands to selectins. Also implicated in tumor cell metastasis; CD molecules (417 aa)
MAPTMicrotubule-associated protein tau; Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N- terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its s [...] (776 aa)
CORO2ACoronin-2A; WD repeat domain containing; Belongs to the WD repeat coronin family (525 aa)
CORO6Coronin-6; WD repeat domain containing; Coronins (472 aa)
MAP2Microtubule-associated protein 2; The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules; A-kinase anchoring proteins (1827 aa)
ETF1Eukaryotic peptide chain release factor subunit 1; Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (437 aa)
PHKA1Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform; Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin (1223 aa)
AP1G1AP-1 complex subunit gamma-1; Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules (825 aa)
CORO1BCoronin-1B; Regulates leading edge dynamics and cell motility in fibroblasts. May be involved in cytokinesis and signal transduction (By similarity); Coronins (489 aa)
DLG4Disks large homolog 4; Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B (By similarity); Belongs to the MAGUK family (767 aa)
CORO1CCoronin-1C; May be involved in cytokinesis, motility, and signal transduction; Belongs to the WD repeat coronin family (527 aa)
PPIP5K1Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1; Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis- diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylat [...] (1433 aa)
GINS3GINS complex subunit 3 (255 aa)
LSM4U6 snRNA-associated Sm-like protein LSm4; Binds specifically to the 3’-terminal U-tract of U6 snRNA; Belongs to the snRNP Sm proteins family (139 aa)
NOS1Nitric oxide synthase, brain; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR; Belongs to the NOS family (1468 aa)
PPIP5K2Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2; Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis- diphosphoinositol tetrakisphosphate, (PP)2-InsP4. PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation. Phosphorylat [...] (1278 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (1%) [HD]